Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(45): 28160-28166, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33106409

RESUMEN

The global distribution of primary production and consumption by humans (fisheries) is well-documented, but we have no map linking the central ecological process of consumption within food webs to temperature and other ecological drivers. Using standardized assays that span 105° of latitude on four continents, we show that rates of bait consumption by generalist predators in shallow marine ecosystems are tightly linked to both temperature and the composition of consumer assemblages. Unexpectedly, rates of consumption peaked at midlatitudes (25 to 35°) in both Northern and Southern Hemispheres across both seagrass and unvegetated sediment habitats. This pattern contrasts with terrestrial systems, where biotic interactions reportedly weaken away from the equator, but it parallels an emerging pattern of a subtropical peak in marine biodiversity. The higher consumption at midlatitudes was closely related to the type of consumers present, which explained rates of consumption better than consumer density, biomass, species diversity, or habitat. Indeed, the apparent effect of temperature on consumption was mostly driven by temperature-associated turnover in consumer community composition. Our findings reinforce the key influence of climate warming on altered species composition and highlight its implications for the functioning of Earth's ecosystems.


Asunto(s)
Biodiversidad , Clima , Explotaciones Pesqueras , Cadena Alimentaria , Alismatales , Animales , Biomasa , Femenino , Peces , Geografía , Calentamiento Global , Humanos , Masculino
2.
Environ Sci Technol ; 56(16): 11300-11309, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35880958

RESUMEN

Large-scale desalination is used increasingly to address growing freshwater demands and climate uncertainty. Discharge of hypersaline brine from desalination operations has the potential to impact marine ecosystems. Here, we used a 7-year Multiple-Before-After-Control-Impact experiment to test the hypothesis that hypersaline discharge from reverse osmosis desalination alters temperate reef communities. Using replicated, video-based, timed searches at eight sites, we sampled fish and invertebrate assemblages before, during, and after the discharge of hypersaline brine. We found that the composition of fish assemblages was significantly altered out to 55 m while the composition of invertebrate assemblages was altered out to 125 m from the outlet during hypersaline discharge. Fish richness and functional diversity increased around the outlet, while the invertebrate assemblages were no less diverse than those on reference reefs. Differences in faunal assemblages between outlet and reference sites during discharging included changes in the frequency of occurrence of both common and rare reef biota. Overall, we found the influence of hypersaline discharge on temperate reef biota to be spatially localized, with the reefs around the outlet continuing to support rich and diverse faunal communities. In some cases, therefore, the marine environmental consequences of large-scale, well-designed, desalination operations may be appropriately balanced against the positive benefits of improved water security.


Asunto(s)
Arrecifes de Coral , Ecosistema , Animales , Biodiversidad , Biota , Peces , Invertebrados
3.
J Phycol ; 58(1): 22-35, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34800039

RESUMEN

Marine heatwaves (MHWs), discrete periods of extreme warm water temperatures superimposed onto persistent ocean warming, have increased in frequency and significantly disrupted marine ecosystems. While field observations on the ecological consequences of MHWs are growing, a mechanistic understanding of their direct effects is rare. We conducted an outdoor tank experiment testing how different thermal stressor profiles impacted the ecophysiological performance of three dominant forest-forming seaweeds. Four thermal scenarios were tested: contemporary summer temperature (22°C), low persistent warming (24°C), a discrete MHW (22-27°C), and temperature variability followed by a MHW (22-24°C, 22-27°C). The physiological performance of seaweeds was strongly related to thermal profile and varied among species, with the highest temperature not always having the strongest effect. MHWs were highly detrimental for the fucoid Phyllospora comosa, whereas the laminarian kelp Ecklonia radiata showed sensitivity to extended thermal stress and demonstrated a cumulative temperature threshold. The fucoid Sargassum linearifolium showed resilience, albeit with signs of decline with bleached and degraded fronds, under all conditions, with stronger decline under stable control and warming conditions. The varying responses of these three co-occurring forest-forming seaweeds under different temperature scenarios suggests that the impact of ocean warming on near shore ecosystems may be complex and will depend on the specific thermal profile of rising water temperatures relative to the vulnerability of different species.


Asunto(s)
Kelp , Phaeophyceae , Algas Marinas , Ecosistema , Bosques , Kelp/fisiología , Temperatura
4.
J Phycol ; 57(4): 1345-1355, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33908033

RESUMEN

Seaweeds provide valuable ecosystem services, but many are undergoing global decline due to climate and anthropogenic stressors. The brown macroalga, Nereia lophocladia (hereafter called Nereia), is among only a handful of seaweeds globally to be listed as critically endangered and is only described from two known locations, but there exists little knowledge about this species. Here, we combine field surveys to verify the distribution of Nereia, with cutting-edge genomics to determine genetic diversity and population structure, and inform ongoing conservation actions. We expand Nereia's known distribution from one to seven locations along a 70-km long coastal stretch in New South Wales but reveal small population sizes at some sites (as few as 8 individuals despite extensive searching). A total of 1,261 genome-wide SNPs were retained from 70 individuals after filtering, and 304 outlier loci under putative selection were detected by one of three methods. Populations showed low genetic diversity (mean expected heterozygosity HE  = 0.055 ± 0.014) and high levels of inbreeding within populations (mean FIS  = 0.721 ± 0.085), along with high genetic differentiation among sites (mean FST  = 0.276), which may increase susceptibility to future environmental change and decrease the species' ability to recover after loss. Given these findings, we recommend the consideration of both in situ and ex situ conservation measures for Nereia, as well as further research into the species' ecology and biology. Nereia remains of conservation concern and its listing as critically endangered is justified until further investigation elucidates the full distribution and adaptive capacity of the species.


Asunto(s)
Ecosistema , Especies en Peligro de Extinción , Phaeophyceae/genética , Algas Marinas , Conservación de los Recursos Naturales , Variación Genética , Genoma , Genómica , Densidad de Población , Algas Marinas/genética
5.
Environ Sci Technol ; 54(2): 735-744, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31849222

RESUMEN

Global growth in desalination industries has increased the need for an evidence-based understanding of associated environmental impacts. We completed a seven-year assessment of the responses of fish assemblages to hypersaline discharge from the large Sydney Desalination Plant. At 12 times before, eight times during, and four times following the cessation of discharging hypersaline brine, we sampled reef fishes at two outlet sites and two close reference sites, as well as four reference sites that were located from 2-8 km from the outlet. At each site and each time of sampling, five 50 m video transects were used to sample reef fish assemblages. Following the commencement of discharging, there was a 279% increase in the abundance of fish around the outlet, which included substantially greater abundances of pelagic and demersal fish, as well as fishes targeted by recreational and commercial fishers. Following the cessation of discharge, abundances of fishes mostly returned to levels such that there was no longer a significant effect compared to the period prior to the commencement of the desalination plant's operations. Overall, our results demonstrate that well-designed marine infrastructure and processes used to support the growing demand for potable water can also enhance local fish abundances and species richness.


Asunto(s)
Peces , Alimentos Marinos , Animales , Biodiversidad , Arrecifes de Coral , Ecosistema , Ambiente
6.
Ecotoxicol Environ Saf ; 198: 110682, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32387844

RESUMEN

Neonicotinoid insecticides, including imidacloprid, are increasingly being used to control insect pests in agricultural and urban areas, and are often detected in aquatic environments. The effects of neonicotinoids on non-target insects have been investigated with respect to behavioural, biochemical, physiological and population-level responses, but information of their effects on crustaceans is limited. This study investigated the adverse effects of both acute and chronic exposure to sublethal concentrations of imidacloprid on the nutritional quality of adult Black Tiger Shrimp (Penaeus monodon). Shrimp were continually exposed to imidacloprid in water (5 µg L-1 and 30 µg L-1), or through their food (12.5 µg g-1 and 75 µg g-1), for the entire exposure period. Imidacloprid concentrations in water and residues in tissues were quantified using liquid chromatography-mass spectrometry after solid-phase extraction and QuEChER extraction respectively. Within 4 days, shrimp accumulated imidacloprid at up to 0.350 µg imidacloprid per g body weight from water and food exposure. Chronic exposure resulted in a significant decrease in body weight and total lipid content. Fatty acid composition in exposed shrimp was modified relative to controls. Overall, these results demonstrate that neonicotinoid exposure could lead to nutritional deficiency, which has implications for the productivity and food quality of shrimp.


Asunto(s)
Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Penaeidae/fisiología , Contaminantes Químicos del Agua/toxicidad , Animales , Insecticidas/análisis , Neonicotinoides/análisis , Valor Nutritivo , Penaeidae/efectos de los fármacos , Extracción en Fase Sólida , Contaminantes Químicos del Agua/análisis
7.
J Fish Biol ; 96(2): 427-433, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31769026

RESUMEN

Here, we provide baseline information about the relative abundance and group size of the Australian cownose ray Rhinoptera neglecta on the central east coast of Australia. Using drone monitoring over 2 years, we completed 293 transects, each 2 km in length, at four locations distributed along c.100 km of coast. In total, 5979 R. neglecta were observed with overall relative abundance (±SE) of, 20.4 (±3.3) individuals per transect. The numbers of R. neglecta varied among locations, with the highest density found off the beach adjacent to the river mouth at Evans Head. The number of rays observed also decreased with increasing wind speed. While some of this relationship was probably associated with visibility, R. neglecta may also move offshore during strong winds. We found no evidence that R. neglecta was under significant threat. Additionally, our cost-effective surveys demonstrate the utility of aerial drones in fisheries conservation biology.


Asunto(s)
Distribución Animal , Rajidae/fisiología , Animales , Australia , Explotaciones Pesqueras/tendencias , Océano Pacífico , Densidad de Población , Viento
8.
Environ Microbiol ; 21(1): 389-401, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30411468

RESUMEN

Microbially mediated biogeochemical processes are crucial for climate regulation and may be disrupted by anthropogenic contaminants. To better manage contaminants, we need tools that make real-time causal links between stressors and altered microbial functions, and the potential consequences for ecosystem services such as climate regulation. In a manipulative field experiment, we used metatranscriptomics to investigate the impact of excess organic enrichment and metal contamination on the gene expression of nitrogen and sulfur metabolisms in coastal sediments. Our gene expression data suggest that excess organic enrichment results in (i) higher transcript levels of genes involved in the production of toxic ammonia and hydrogen sulfide and (ii) lower transcript levels associated with the degradation of a greenhouse gas (nitrous oxide). However, metal contamination did not have any significant impact on gene expression. We reveal the genetic mechanisms that may lead to altered productivity and greenhouse gas production in coastal sediments due to anthropogenic contaminants. Our data highlight the applicability of metatranscriptomics as a management tool that provides an immense breadth of information and can identify potentially impacted process measurements that need further investigation.


Asunto(s)
Bacterias/metabolismo , Clima , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Gases de Efecto Invernadero/metabolismo , Amoníaco/metabolismo , Ecosistema , Sulfuro de Hidrógeno/metabolismo , Metales/análisis , Nitrógeno/metabolismo , Óxido Nitroso/metabolismo
9.
Proc Biol Sci ; 286(1899): 20182866, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30900532

RESUMEN

The interactive effects of ocean warming and invasive species are complex and remain a source of uncertainty for projecting future ecological change. Climate-mediated change to trophic interactions can have pervasive ecological consequences, but the role of invasion in mediating trophic effects is largely unstudied. Using manipulative experiments in replicated outdoor mesocosms, we reveal how near-future ocean warming and macrophyte invasion scenarios interactively impact gastropod grazing intensity and preference for consumption of foundation macroalgae ( Ecklonia radiata and Sargassum vestitum). Elevated water temperature increased the consumption of both macroalgae through greater grazing intensity. Given the documented decline of kelp ( E. radiata) growth at higher water temperatures, enhanced grazing could contribute to the shift from kelp-dominated to Sargassum-dominated reefs that is occurring at the low-latitude margins of kelp distribution. However, the presence of a native invader ( Caulerpa filiformis) was related to low consumption by the herbivores on dominant kelp at warmer temperatures. Thus, antagonistic effects between climate change and a range expanding species can favour kelp persistence in a warmer future. Introduction of species should, therefore, not automatically be considered unfavourable under climate change scenarios. Climatic changes are increasing the need for effective management actions to address the interactive effects of multiple stressors and their ecological consequences, rather than single threats in isolation.


Asunto(s)
Cambio Climático , Cadena Alimentaria , Kelp/fisiología , Sargassum/fisiología , Temperatura , Calentamiento Global , Especies Introducidas , Nueva Gales del Sur , Agua de Mar
10.
Proc Biol Sci ; 286(1896): 20181887, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30963929

RESUMEN

Climate change is driving global declines of marine habitat-forming species through physiological effects and through changes to ecological interactions, with projected trajectories for ocean warming and acidification likely to exacerbate such impacts in coming decades. Interactions between habitat-formers and their microbiomes are fundamental for host functioning and resilience, but how such relationships will change in future conditions is largely unknown. We investigated independent and interactive effects of warming and acidification on a large brown seaweed, the kelp Ecklonia radiata, and its associated microbiome in experimental mesocosms. Microbial communities were affected by warming and, during the first week, by acidification. During the second week, kelp developed disease-like symptoms previously observed in the field. The tissue of some kelp blistered, bleached and eventually degraded, particularly under the acidification treatments, affecting photosynthetic efficiency. Microbial communities differed between blistered and healthy kelp for all treatments, except for those under future conditions of warming and acidification, which after two weeks resembled assemblages associated with healthy hosts. This indicates that changes in the microbiome were not easily predictable as the severity of future climate scenarios increased. Future ocean conditions can change kelp microbiomes and may lead to host disease, with potentially cascading impacts on associated ecosystems.


Asunto(s)
Cambio Climático , Kelp/fisiología , Microbiota , Agua de Mar/química , Ecosistema , Calentamiento Global , Concentración de Iones de Hidrógeno , Kelp/microbiología
11.
Glob Chang Biol ; 25(2): 699-707, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30414338

RESUMEN

Climate change can affect marine and estuarine fish via alterations to their distributions, abundances, sizes, physiology and ecological interactions, threatening the provision of ecosystem goods and services. While we have an emerging understanding of such ecological impacts to fish, we know little about the potential influence of climate change on the provision of nutritional seafood to sustain human populations. In particular, the quantity, quality and/or taste of seafood may be altered by future environmental changes with implications for the economic viability of fisheries. In an orthogonal mesocosm experiment, we tested the influence of near-future ocean warming and acidification on the growth, health and seafood quality of a recreationally and commercially important fish, yellowfin bream (Acanthopagrus australis). The growth of yellowfin bream significantly increased under near-future temperature conditions (but not acidification), with little change in health (blood glucose and haematocrit) or tissue biochemistry and nutritional properties (fatty acids, lipids, macro- and micronutrients, moisture, ash and total N). Yellowfin bream appear to be highly resilient to predicted near-future ocean climate change, which might be facilitated by their wide spatio-temporal distribution across habitats and broad diet. Moreover, an increase in growth, but little change in tissue quality, suggests that near-future ocean conditions will benefit fisheries and fishers that target yellowfin bream. The data reiterate the inherent resilience of yellowfin bream as an evolutionary consequence of their euryhaline status in often environmentally challenging habitats and imply their sustainable and viable fisheries into the future. We contend that widely distributed species that span large geographic areas and habitats can be "climate winners" by being resilient to the negative direct impacts of near-future oceanic and estuarine climate change.


Asunto(s)
Cambio Climático , Explotaciones Pesqueras , Calidad de los Alimentos , Perciformes/fisiología , Alimentos Marinos/análisis , Animales , Calentamiento Global , Calor , Concentración de Iones de Hidrógeno , Nueva Gales del Sur , Perciformes/crecimiento & desarrollo , Agua de Mar/química
12.
Ecology ; 99(5): 1005-1010, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29714829

RESUMEN

Ecologically dominant species often define ecosystem states, but as human disturbances intensify, their subordinate counterparts increasingly displace them. We consider the duality of disturbance by examining how environmental drivers can simultaneously act as a stressor to dominant species and as a resource to subordinates. Using a model ecosystem, we demonstrate that CO2 -driven interactions between species can account for such reversals in dominance; i.e., the displacement of dominants (kelp forests) by subordinates (turf algae). We established that CO2 enrichment had a direct positive effect on productivity of turfs, but a negligible effect on kelp. CO2 enrichment further suppressed the abundance and feeding rate of the primary grazer of turfs (sea urchins), but had an opposite effect on the minor grazer (gastropods). Thus, boosted production of subordinate producers, exacerbated by a net reduction in its consumption by primary grazers, accounts for community change (i.e., turf displacing kelp). Ecosystem collapse, therefore, is more likely when resource enrichment alters competitive dominance of producers, and consumers fail to compensate. By recognizing such duality in the responses of interacting species to disturbance, which may stabilize or exacerbate change, we can begin to understand how intensifying human disturbances determine whether or not ecosystems undergo phase shifts.


Asunto(s)
Ecosistema , Kelp , Animales , Dióxido de Carbono , Humanos , Concentración de Iones de Hidrógeno , Agua de Mar
13.
Glob Chang Biol ; 23(9): 3533-3542, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28122402

RESUMEN

Continental boundary currents are projected to be altered under future scenarios of climate change. As these currents often influence dispersal and connectivity among populations of many marine organisms, changes to boundary currents may have dramatic implications for population persistence. Networks of marine protected areas (MPAs) often aim to maintain connectivity, but anticipation of the scale and extent of climatic impacts on connectivity are required to achieve this critical conservation goal in a future of climate change. For two key marine species (kelp and sea urchins), we use oceanographic modelling to predict how continental boundary currents are likely to change connectivity among a network of MPAs spanning over 1000 km of coastline off the coast of eastern Australia. Overall change in predicted connectivity among pairs of MPAs within the network did not change significantly over and above temporal variation within climatic scenarios, highlighting the need for future studies to incorporate temporal variation in dispersal to robustly anticipate likely change. However, the intricacies of connectivity between different pairs of MPAs were noteworthy. For kelp, poleward connectivity among pairs of MPAs tended to increase in the future, whereas equatorward connectivity tended to decrease. In contrast, for sea urchins, connectivity among pairs of MPAs generally decreased in both directions. Self-seeding within higher-latitude MPAs tended to increase, and the role of low-latitude MPAs as a sink for urchins changed significantly in contrasting ways. These projected changes have the potential to alter important genetic parameters with implications for adaptation and ecosystem vulnerability to climate change. Considering such changes, in the context of managing and designing MPA networks, may ensure that conservation goals are achieved into the future.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Océanos y Mares , Animales , Australia , Cambio Climático , Dinámica Poblacional
14.
Glob Chang Biol ; 23(1): 353-361, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27392308

RESUMEN

The combination of ocean warming and acidification brings an uncertain future to kelp forests that occupy the warmest parts of their range. These forests are not only subject to the direct negative effects of ocean climate change, but also to a combination of unknown indirect effects associated with changing ecological landscapes. Here, we used mesocosm experiments to test the direct effects of ocean warming and acidification on kelp biomass and photosynthetic health, as well as climate-driven disparities in indirect effects involving key consumers (urchins and rock lobsters) and competitors (algal turf). Elevated water temperature directly reduced kelp biomass, while their turf-forming competitors expanded in response to ocean acidification and declining kelp canopy. Elevated temperatures also increased growth of urchins and, concurrently, the rate at which they thinned kelp canopy. Rock lobsters, which are renowned for keeping urchin populations in check, indirectly intensified negative pressures on kelp by reducing their consumption of urchins in response to elevated temperature. Overall, these results suggest that kelp forests situated towards the low-latitude margins of their distribution will need to adapt to ocean warming in order to persist in the future. What is less certain is how such adaptation in kelps can occur in the face of intensifying consumptive (via ocean warming) and competitive (via ocean acidification) pressures that affect key ecological interactions associated with their persistence. If such indirect effects counter adaptation to changing climate, they may erode the stability of kelp forests and increase the probability of regime shifts from complex habitat-forming species to more simple habitats dominated by algal turfs.


Asunto(s)
Cambio Climático , Cadena Alimentaria , Kelp/crecimiento & desarrollo , Animales , Biomasa , Clima , Ecosistema , Bosques , Nephropidae , Erizos de Mar
15.
Conserv Biol ; 28(2): 438-45, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24373031

RESUMEN

The global extent of macroalgal forests is declining, greatly affecting marine biodiversity at broad scales through the effects macroalgae have on ecosystem processes, habitat provision, and food web support. Networks of marine protected areas comprise one potential tool that may safeguard gene flow among macroalgal populations in the face of increasing population fragmentation caused by pollution, habitat modification, climate change, algal harvesting, trophic cascades, and other anthropogenic stressors. Optimal design of protected area networks requires knowledge of effective dispersal distances for a range of macroalgae. We conducted a global meta-analysis based on data in the published literature to determine the generality of relation between genetic differentiation and geographic distance among macroalgal populations. We also examined whether spatial genetic variation differed significantly with respect to higher taxon, life history, and habitat characteristics. We found clear evidence of population isolation by distance across a multitude of macroalgal species. Genetic and geographic distance were positively correlated across 49 studies; a modal distance of 50-100 km maintained F(ST) < 0.2. This relation was consistent for all algal divisions, life cycles, habitats, and molecular marker classes investigated. Incorporating knowledge of the spatial scales of gene flow into the design of marine protected area networks will help moderate anthropogenic increases in population isolation and inbreeding and contribute to the resilience of macroalgal forests.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Algas Marinas/fisiología , Cambio Climático , Ecosistema , Variación Genética , Algas Marinas/genética
16.
Conserv Biol ; 28(5): 1206-14, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24779474

RESUMEN

The ocean provides food, economic activity, and cultural value for a large proportion of humanity. Our knowledge of marine ecosystems lags behind that of terrestrial ecosystems, limiting effective protection of marine resources. We describe the outcome of 2 workshops in 2011 and 2012 to establish a list of important questions, which, if answered, would substantially improve our ability to conserve and manage the world's marine resources. Participants included individuals from academia, government, and nongovernment organizations with broad experience across disciplines, marine ecosystems, and countries that vary in levels of development. Contributors from the fields of science, conservation, industry, and government submitted questions to our workshops, which we distilled into a list of priority research questions. Through this process, we identified 71 key questions. We grouped these into 8 subject categories, each pertaining to a broad component of marine conservation: fisheries, climate change, other anthropogenic threats, ecosystems, marine citizenship, policy, societal and cultural considerations, and scientific enterprise. Our questions address many issues that are specific to marine conservation, and will serve as a road map to funders and researchers to develop programs that can greatly benefit marine conservation.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Ecosistema , Océanos y Mares
17.
Environ Sci Technol ; 48(3): 1638-45, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24341789

RESUMEN

There is increasing concern about the impacts of microplastics (<1 mm) on marine biota. Microplastics may be mistaken for food items and ingested by a wide variety of organisms. While the effects of ingesting microplastic have been explored for some adult organisms, there is poor understanding of the effects of microplastic ingestion on marine larvae. Here, we investigated the ingestion of polyethylene microspheres by larvae of the sea urchin, Tripneustes gratilla. Ingestion rates scaled with the concentration of microspheres. Ingestion rates were, however, reduced by biological fouling of microplastic and in the presence of phytoplankton food. T. gratilla larvae were able to egest microspheres from their stomach within hours of ingestion. A microsphere concentration far exceeding those recorded in the marine environment had a small nondose dependent effect on larval growth, but there was no significant effect on survival. In contrast, environmentally realistic concentrations appeared to have little effect. Overall, these results suggest that current levels of microplastic pollution in the oceans only pose a limited threat to T. gratilla and other marine invertebrate larvae, but further research is required on a broad range of species, trophic levels, and polymer types.


Asunto(s)
Larva/efectos de los fármacos , Plásticos/toxicidad , Erizos de Mar/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Dieta , Larva/fisiología , Océanos y Mares , Erizos de Mar/fisiología
18.
Sci Total Environ ; 945: 174058, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38897478

RESUMEN

Ocean warming will continue to affect the growth, body condition and geographic distributions of marine fishes and understanding these effects is an urgent challenge for fisheries research and management. Determining how temperature is recorded in fish otolith carbonate, provides an additional chronological tool to investigate thermal histories, preferences and patterns of movement throughout an individual's life history. The influence of three water temperature treatments (22°C, 25°C, and 28°C) on hatchery-reared juvenile stout whiting, Sillago robusta, was tested using a controlled outdoor mesocosm system. Fish were measured for change in length and weight, and body condition was determined using bioelectrical impedance analysis. Sagittal otoliths were analysed for stable oxygen (δ18Ootolith) and carbon (δ13Cotolith) isotopes via isotope ratio mass spectrometry. Whiting kept at 22°C were significantly smaller and had diminished body condition compared to fish in 25°C and 28°C, which did not significantly differ from each other. The δ18O otolith values of stout whiting demonstrated a negative temperature-dependent fractionation relationship which was similar in slope but had a different intercept to the relationships reported for inorganic aragonite and other marine fish species. The δ13C otolith values also showed a negative relationship with water temperature, and the calculated proportion of metabolic carbon M in otoliths differed between fish reared in the coolest (22°C) and warmest (28°C) temperature treatments. Overall, the results suggest that stout whiting may have reached an upper growth threshold between 25°C and 28°C, and that growth and body condition may be optimised during warmer seasons and toward the northerly regions of their distribution. Otolith oxygen thermometry shows promise as a natural tracer of thermal life history, and species-specific fractionation equations should be utilised when possible to prevent errors in temperature reconstructions of wild-caught fish.


Asunto(s)
Isótopos de Carbono , Membrana Otolítica , Isótopos de Oxígeno , Temperatura , Animales , Membrana Otolítica/química , Isótopos de Oxígeno/análisis , Isótopos de Carbono/análisis , Gadiformes/metabolismo , Gadiformes/fisiología , Agua de Mar/química
19.
Mar Pollut Bull ; 188: 114695, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36774916

RESUMEN

The coronavirus pandemic has caused a surge in the use of both disposable and re-usable mask pollution globally. It is important to understand the potential impact this influx of novel pollution has on key ecological processes, such as detrital dynamics. We aimed to understand the impact mask pollution has on the decomposition of a common coastal seagrass, Zostera muelleri. Using an outdoor mesocosm system with heater chiller units and a gas mixer, we were able to test the impact of both re-usable single-ply homemade cotton masks and disposable surgical masks on samples of Z. muelleri detritus under different environmental conditions. We found that disposable masks, but not re-usable masks, significantly increased decomposition of Z. muelleri detritus. This may be due to the increased surface area available for detritivorous microorganism colonisation, driving further decomposition. This could have negative ramifications for seagrass communities and adjacent ecosystems.


Asunto(s)
Infecciones por Coronavirus , Zosteraceae , Máscaras , Ecosistema , Pandemias
20.
Mar Pollut Bull ; 175: 113368, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35114545

RESUMEN

Outlet infrastructure and hypersaline discharge from large-scale desalination operations have the potential to impact marine environments. Here, we present the results of a six-year M-BACI assessment of the impacts of desalination discharge outlet construction and hypersaline effluent on the cover of habitat-forming species on temperate reefs. The construction of the desalination outlet caused a decrease in the cover of Ecklonia radiata (kelp) and an increase in the cover of algal turfs up to 55 m from the outlet. Following the commencement of discharging of hypersaline brine, the impact to E. radiata and algal turfs persisted, but decreased in spatial extent to be less than 25 m from the outlet. Hypersaline discharge was also associated with a significant decline in the cover of sponges in outlet compared to reference sites. Overall, our results demonstrate that the water security benefits from large-scale desalination may sometimes be appropriately balanced against the associated ecological consequences.


Asunto(s)
Arrecifes de Coral , Ecosistema , Kelp , Salinidad , Purificación del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA