Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Phys Chem A ; 122(41): 8107-8113, 2018 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-30239204

RESUMEN

The charging dynamics of helium droplets driven by embedded xenon cluster ignition in strong laser fields is studied by comparing the abundances of helium and highly charged Xe ions to the electron signal. Femtosecond pump-probe experiments show that near the optimal delay for highly charged xenon the electron yield increases, especially at low energies. The electron signature can be traced back to the ionization of the helium environment by Xe seed electrons. Accompanying molecular dynamics simulations suggest a two-step ionization scenario in the Xe-He core-shell system. In contrast to xenon, the experimental signal of the helium ions, as well as low-energy electron emission show a deviating delay dependence, indicating differences in the temporal and spacial development of the charge state distribution of Xe core and He surrounding. From the pump-probe dependence of the electron emission, effective temperatures can be extracted, indicating the nanoplasma decay.

2.
PLoS One ; 10(6): e0126536, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26039251

RESUMEN

BACKGROUND: Ship engine emissions are important with regard to lung and cardiovascular diseases especially in coastal regions worldwide. Known cellular responses to combustion particles include oxidative stress and inflammatory signalling. OBJECTIVES: To provide a molecular link between the chemical and physical characteristics of ship emission particles and the cellular responses they elicit and to identify potentially harmful fractions in shipping emission aerosols. METHODS: Through an air-liquid interface exposure system, we exposed human lung cells under realistic in vitro conditions to exhaust fumes from a ship engine running on either common heavy fuel oil (HFO) or cleaner-burning diesel fuel (DF). Advanced chemical analyses of the exhaust aerosols were combined with transcriptional, proteomic and metabolomic profiling including isotope labelling methods to characterise the lung cell responses. RESULTS: The HFO emissions contained high concentrations of toxic compounds such as metals and polycyclic aromatic hydrocarbon, and were higher in particle mass. These compounds were lower in DF emissions, which in turn had higher concentrations of elemental carbon ("soot"). Common cellular reactions included cellular stress responses and endocytosis. Reactions to HFO emissions were dominated by oxidative stress and inflammatory responses, whereas DF emissions induced generally a broader biological response than HFO emissions and affected essential cellular pathways such as energy metabolism, protein synthesis, and chromatin modification. CONCLUSIONS: Despite a lower content of known toxic compounds, combustion particles from the clean shipping fuel DF influenced several essential pathways of lung cell metabolism more strongly than particles from the unrefined fuel HFO. This might be attributable to a higher soot content in DF. Thus the role of diesel soot, which is a known carcinogen in acute air pollution-induced health effects should be further investigated. For the use of HFO and DF we recommend a reduction of carbonaceous soot in the ship emissions by implementation of filtration devices.


Asunto(s)
Endocitosis/efectos de los fármacos , Gasolina , Pulmón/metabolismo , Estrés Oxidativo/efectos de los fármacos , Material Particulado/toxicidad , Emisiones de Vehículos/toxicidad , Línea Celular Tumoral , Humanos , Pulmón/patología , Navíos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA