RESUMEN
Chronic liver disease is a major public health burden worldwide1. Although different aetiologies and mechanisms of liver injury exist, progression of chronic liver disease follows a common pathway of liver inflammation, injury and fibrosis2. Here we examined the association between clonal haematopoiesis of indeterminate potential (CHIP) and chronic liver disease in 214,563 individuals from 4 independent cohorts with whole-exome sequencing data (Framingham Heart Study, Atherosclerosis Risk in Communities Study, UK Biobank and Mass General Brigham Biobank). CHIP was associated with an increased risk of prevalent and incident chronic liver disease (odds ratio = 2.01, 95% confidence interval (95% CI) [1.46, 2.79]; P < 0.001). Individuals with CHIP were more likely to demonstrate liver inflammation and fibrosis detectable by magnetic resonance imaging compared to those without CHIP (odds ratio = 1.74, 95% CI [1.16, 2.60]; P = 0.007). To assess potential causality, Mendelian randomization analyses showed that genetic predisposition to CHIP was associated with a greater risk of chronic liver disease (odds ratio = 2.37, 95% CI [1.57, 3.6]; P < 0.001). In a dietary model of non-alcoholic steatohepatitis, mice transplanted with Tet2-deficient haematopoietic cells demonstrated more severe liver inflammation and fibrosis. These effects were mediated by the NLRP3 inflammasome and increased levels of expression of downstream inflammatory cytokines in Tet2-deficient macrophages. In summary, clonal haematopoiesis is associated with an elevated risk of liver inflammation and chronic liver disease progression through an aberrant inflammatory response.
Asunto(s)
Hematopoyesis Clonal , Susceptibilidad a Enfermedades , Hepatitis , Cirrosis Hepática , Animales , Ratones , Hematopoyesis Clonal/genética , Hepatitis/genética , Inflamación/genética , Cirrosis Hepática/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Oportunidad Relativa , Progresión de la EnfermedadRESUMEN
ABSTRACT: Secomb, JL, Kelly, M, and Dascombe, BJ. Hip strength profiling of ice hockey athletes across various joint-specific angles: monitoring and injury implications. J Strength Cond Res 37(7): e422-e429, 2023-The purpose of this research was to compare the hip adduction and abduction relative strength, adduction-to-abduction strength ratio (ADD:ABD), and interlimb asymmetries of ice hockey athletes between the typically used bilateral position and 3 unilateral positions in joint-specific angles (0°, 25°, and 50° of hip abduction) relevant to an ice hockey stride. A secondary purpose was to explore any relationships between these measures and hip and groin noncontact injuries, and self-reported pain and disability. Twenty-five semiprofessional male ice hockey athletes (26.7 ± 6.7 years) were assessed for hip abduction range of motion (ROM), hip adduction and abduction relative strength, and completed the Copenhagen Hip and Groin Outcome Score (HAGOS) questionnaire. Within-subjects repeated-measures analysis of variance revealed a significant effect for the assessment position for adduction ( F1,24 = 52.4, p < 0.01) and abduction relative strength ( F1,24 = 152.1, p < 0.01), ADD:ABD ( F1,24 = 38.9, p < 0.01), and the interlimb asymmetries for each of these variables ( F1,24 = 9.8-12.3; p < 0.01), with large strength differences observed between the bilateral assessment and all unilateral assessment positions for adduction and abduction relative strength. In addition, 4 athletes experienced a noncontact hip or groin injury within 1 month after testing, and when compared with the rest of the cohort ( n = 21) with Welch's t -tests, demonstrated significantly reduced hip abduction ROM (mean difference [MD] = -8.4 ± 2.5°; p < 0.01), sport subscale score for the HAGOS questionnaire (MD = -33.9 ± 7.1; p < 0.01), and a decline in hip adduction relative strength in the unilateral position of 50° compared with the position of 25° hip abduction (MD = -13.4 ± 3.8; p = 0.04). These results suggest that practitioners working with ice hockey athletes may benefit from profiling hip strength in these unilateral joint-specific angle positions because they provide an evidence base to determine the hip strength needs of ice hockey athletes in positions associated with skating performance and noncontact hip and groin injury mechanisms (between 25° and 50° of hip abduction).
Asunto(s)
Hockey , Humanos , Masculino , Hockey/lesiones , Cadera , Articulación de la Cadera , Rango del Movimiento Articular , AtletasRESUMEN
BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) is increasing in prevalence worldwide. NAFLD is associated with excess risk of all-cause mortality, and its progression to nonalcoholic steatohepatitis (NASH) and fibrosis accounts for a growing proportion of cirrhosis and hepatocellular cancer and thus is a leading cause of liver transplant worldwide. Noninvasive precise methods to identify patients with NASH and NASH with significant disease activity and fibrosis are crucial when the disease is still modifiable. The aim of this study was to examine the clinical utility of corrected T1 (cT1) vs magnetic resonance imaging (MRI) liver fat for identification of NASH participants with nonalcoholic fatty liver disease activity score ≥4 and fibrosis stage (F) ≥2 (high-risk NASH). METHODS: Data from five clinical studies (n = 543) with participants suspected of NAFLD were pooled or used for individual participant data meta-analysis. The diagnostic accuracy of the MRI biomarkers to stratify NASH patients was determined using the area under the receiver operating characteristic curve (AUROC). RESULTS: A stepwise increase in cT1 and MRI liver fat with increased NAFLD severity was shown, and cT1 was significantly higher in participants with high-risk NASH. The diagnostic accuracy (AUROC) of cT1 to identify patients with NASH was 0.78 (95% CI, 0.74-0.82), for liver fat was 0.78 (95% CI, 0.73-0.82), and when combined with MRI liver fat was 0.82 (95% CI, 0.78-0.85). The diagnostic accuracy of cT1 to identify patients with high-risk NASH was good (AUROC = 0.78; 95% CI, 0.74-0.82), was superior to MRI liver fat (AUROC = 0.69; 95% CI, 0.64-0.74), and was not substantially improved by combining it with MRI liver fat (AUROC = 0.79; 95% CI, 0.75-0.83). The meta-analysis showed similar performance to the pooled analysis for these biomarkers. CONCLUSIONS: This study shows that quantitative MRI-derived biomarkers cT1 and liver fat are suitable for identifying patients with NASH, and cT1 is a better noninvasive technology than liver fat to identify NASH patients at greatest risk of disease progression. Therefore, MRI cT1 and liver fat have important clinical utility to help guide the appropriate use of interventions in NAFLD and NASH clinical care pathways.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Hígado/diagnóstico por imagen , Hígado/patología , Cirrosis Hepática/diagnóstico , Imagen por Resonancia Magnética/métodos , Biomarcadores , Estudios Multicéntricos como AsuntoRESUMEN
BACKGROUND & AIMS: A common genetic variant near MBOAT7 (rs641738C>T) has been previously associated with hepatic fat and advanced histology in NAFLD; however, these findings have not been consistently replicated in the literature. We aimed to establish whether rs641738C>T is a risk factor across the spectrum of NAFLD and to characterise its role in the regulation of related metabolic phenotypes through a meta-analysis. METHODS: We performed a meta-analysis of studies with data on the association between rs641738C>T genotype and liver fat, NAFLD histology, and serum alanine aminotransferase (ALT), lipids or insulin. These included directly genotyped studies and population-level data from genome-wide association studies (GWAS). We performed a random effects meta-analysis using recessive, additive and dominant genetic models. RESULTS: Data from 1,066,175 participants (9,688 with liver biopsies) across 42 studies were included in the meta-analysis. rs641738C>T was associated with higher liver fat on CT/MRI (+0.03 standard deviations [95% CI 0.02-0.05], pz = 4.8×10-5) and diagnosis of NAFLD (odds ratio [OR] 1.17 [95% CI 1.05-1.3], pz = 0.003) in Caucasian adults. The variant was also positively associated with presence of advanced fibrosis (OR 1.22 [95% CI 1.03-1.45], pz = 0.021) in Caucasian adults using a recessive model of inheritance (CC + CT vs. TT). Meta-analysis of data from previous GWAS found the variant to be associated with higher ALT (pz = 0.002) and lower serum triglycerides (pz = 1.5×10-4). rs641738C>T was not associated with fasting insulin and no effect was observed in children with NAFLD. CONCLUSIONS: Our study validates rs641738C>T near MBOAT7 as a risk factor for the presence and severity of NAFLD in individuals of European descent. LAY SUMMARY: Fatty liver disease is a common condition where fat builds up in the liver, which can cause liver inflammation and scarring (including 'cirrhosis'). It is closely linked to obesity and diabetes, but some genes are also thought to be important. We did this study to see whether one specific change ('variant') in one gene ('MBOAT7') was linked to fatty liver disease. We took data from over 40 published studies and found that this variant near MBOAT7 is linked to more severe fatty liver disease. This means that drugs designed to work on MBOAT7 could be useful for treating fatty liver disease.
Asunto(s)
Aciltransferasas/genética , Cirrosis Hepática , Hígado/patología , Proteínas de la Membrana/genética , Enfermedad del Hígado Graso no Alcohólico , Alanina Transaminasa/sangre , Descubrimiento de Drogas , Predisposición Genética a la Enfermedad , Humanos , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Polimorfismo de Nucleótido SimpleRESUMEN
OBJECTIVES: Autoimmune hepatitis (AIH) is a progressive liver disease managed with corticosteroids and immunosuppression and monitored using a combination of liver biochemistry and histology. However, liver biopsy is invasive with risk of pain and bleeding. The aim of the present study was to investigate the utility of noninvasive imaging with multiparametric magnetic resonance imaging (MRI) (mpMRI) to provide clinically useful information on the presence and extent of hepatic inflammation, potentially guiding immunosuppression. METHODS: Eighty-one participants (aged 6-18), 21 healthy and 60 AIH patients, underwent multiparametric MRI to measure fibro-inflammation with iron-corrected T1 (cT1) at the Children's Memorial Health Institute in Warsaw alongside other clinical blood tests and liver biopsy at recruitment and after an average of 16-month follow-up (range 9-22 months). Correlation analyses were used to investigate the associations between cT1 with blood serum markers and histological scores. RESULTS: At recruitment, patients with AIH had a higher cT1 value than healthy controls (Pâ<â0.01). cT1 correlated significantly with key histopathological features of disease. Treatment naïve AIH patients showed evidence of inflammation and heterogeneity across the liver compared to healthy controls.At follow-up, cT1 showed utility in monitoring disease regression as most patients showed significantly reduced fibro-inflammation with treatment (Pâ<â0.0001) over the observational period. Six patients had histological fibrosis and clear fibro-inflammation on MR despite biochemical remission (normalized aspartate aminotransferase (AST), alanine aminotransferase (ALT), and immunoglobulin G [IgG]). CONCLUSIONS: Multiparametric MRI can measure disease burden in pediatric AIH and can show changes over time in response to therapy. Active disease can be seen even in biochemical remission in children.
Asunto(s)
Hepatitis Autoinmune , Imágenes de Resonancia Magnética Multiparamétrica , Alanina Transaminasa , Aspartato Aminotransferasas , Niño , Hepatitis Autoinmune/diagnóstico por imagen , HumanosRESUMEN
BACKGROUND & AIMS: MRI-based corrected T1 (cT1) is a non-invasive method to grade the severity of steatohepatitis and liver fibrosis. We aimed to identify genetic variants influencing liver cT1 and use genetics to understand mechanisms underlying liver fibroinflammatory disease and its link with other metabolic traits and diseases. METHODS: First, we performed a genome-wide association study (GWAS) in 14,440 Europeans, with liver cT1 measures, from the UK Biobank. Second, we explored the effects of the cT1 variants on liver blood tests, and a range of metabolic traits and diseases. Third, we used Mendelian randomisation to test the causal effects of 24 predominantly metabolic traits on liver cT1 measures. RESULTS: We identified 6 independent genetic variants associated with liver cT1 that reached the GWAS significance threshold (p <5×10-8). Four of the variants (rs759359281 in SLC30A10, rs13107325 in SLC39A8, rs58542926 in TM6SF2, rs738409 in PNPLA3) were also associated with elevated aminotransferases and had variable effects on liver fat and other metabolic traits. Insulin resistance, type 2 diabetes, non-alcoholic fatty liver and body mass index were causally associated with elevated cT1, whilst favourable adiposity (instrumented by variants associated with higher adiposity but lower risk of cardiometabolic disease and lower liver fat) was found to be protective. CONCLUSION: The association between 2 metal ion transporters and cT1 indicates an important new mechanism in steatohepatitis. Future studies are needed to determine whether interventions targeting the identified transporters might prevent liver disease in at-risk individuals. LAY SUMMARY: We estimated levels of liver inflammation and scarring based on magnetic resonance imaging of 14,440 UK Biobank participants. We performed a genetic study and identified variations in 6 genes associated with levels of liver inflammation and scarring. Participants with variations in 4 of these genes also had higher levels of markers of liver cell injury in blood samples, further validating their role in liver health. Two identified genes are involved in the transport of metal ions in our body. Further investigation of these variations may lead to better detection, assessment, and/or treatment of liver inflammation and scarring.
Asunto(s)
Proteínas de Transporte de Catión/genética , Hígado Graso/genética , Cirrosis Hepática/genética , Hígado , Síndrome Metabólico/genética , Europa (Continente)/epidemiología , Hígado Graso/epidemiología , Femenino , Predisposición Genética a la Enfermedad , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , Hígado/diagnóstico por imagen , Hígado/patología , Cirrosis Hepática/epidemiología , Imagen por Resonancia Magnética/métodos , Masculino , Análisis de la Aleatorización Mendeliana , Síndrome Metabólico/epidemiología , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Factores Protectores , Medición de Riesgo/métodosRESUMEN
BACKGROUND: Magnetic resonance cholangiopancreatography (MRCP) is an important tool for noninvasive imaging of biliary disease, however, its assessment is currently subjective, resulting in the need for objective biomarkers. PURPOSE: To investigate the accuracy, scan/rescan repeatability, and cross-scanner reproducibility of a novel quantitative MRCP tool on phantoms and in vivo. Additionally, to report normative ranges derived from the healthy cohort for duct measurements and tree-level summary metrics. STUDY TYPE: Prospective. PHANTOMS/SUBJECTS: Phantoms: two bespoke designs, one with varying tube-width, curvature, and orientation, and one exhibiting a complex structure based on a real biliary tree. Subjects Twenty healthy volunteers, 10 patients with biliary disease, and 10 with nonbiliary liver disease. SEQUENCE/FIELD STRENGTH: MRCP data were acquired using heavily T2 -weighted 3D multishot fast/turbo spin echo acquisitions at 1.5T and 3T. ASSESSMENT: Digital instances of the phantoms were synthesized with varying resolution and signal-to-noise ratio. Physical 3D-printed phantoms were scanned across six scanners (two field strengths for each of three manufacturers). Human subjects were imaged on four scanners (two fieldstrengths for each of two manufacturers). STATISTICAL TESTS: Bland-Altman analysis and repeatability coefficient (RC). RESULTS: Accuracy of the diameter measurement approximated the scanning resolution, with 95% limits of agreement (LoA) from -1.1 to 1.0 mm. Excellent phantom repeatability was observed, with LoA from -0.4 to 0.4 mm. Good reproducibility was observed across the six scanners for both phantoms, with a range of LoA from -1.1 to 0.5 mm. Inter- and intraobserver agreement was high. Quantitative MRCP detected strictures and dilatations in the phantom with 76.6% and 85.9% sensitivity and 100% specificity in both. Patients and healthy volunteers exhibited significant differences in metrics including common bile duct (CBD) maximum diameter (7.6 mm vs. 5.2 mm P = 0.002), and overall biliary tree volume 12.36 mL vs. 4.61 mL, P = 0.0026). DATA CONCLUSION: The results indicate that quantitative MRCP provides accurate, repeatable, and reproducible measurements capable of objectively assessing cholangiopathic change. Evidence Level: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;52:807-820.
Asunto(s)
Pancreatocolangiografía por Resonancia Magnética , Procesamiento de Imagen Asistido por Computador , Humanos , Imagen por Resonancia Magnética , Fantasmas de Imagen , Estudios Prospectivos , Reproducibilidad de los ResultadosRESUMEN
BACKGROUND & AIMS: Excess liver iron content is common and is linked to the risk of hepatic and extrahepatic diseases. We aimed to identify genetic variants influencing liver iron content and use genetics to understand its link to other traits and diseases. METHODS: First, we performed a genome-wide association study (GWAS) in 8,289 individuals from UK Biobank, whose liver iron level had been quantified by magnetic resonance imaging, before validating our findings in an independent cohort (nâ¯=â¯1,513 from IMI DIRECT). Second, we used Mendelian randomisation to test the causal effects of 25 predominantly metabolic traits on liver iron content. Third, we tested phenome-wide associations between liver iron variants and 770 traits and disease outcomes. RESULTS: We identified 3 independent genetic variants (rs1800562 [C282Y] and rs1799945 [H63D] in HFE and rs855791 [V736A] in TMPRSS6) associated with liver iron content that reached the GWAS significance threshold (pâ¯<5â¯×â¯10-8). The 2 HFE variants account for â¼85% of all cases of hereditary haemochromatosis. Mendelian randomisation analysis provided evidence that higher central obesity plays a causal role in increased liver iron content. Phenome-wide association analysis demonstrated shared aetiopathogenic mechanisms for elevated liver iron, high blood pressure, cirrhosis, malignancies, neuropsychiatric and rheumatological conditions, while also highlighting inverse associations with anaemias, lipidaemias and ischaemic heart disease. CONCLUSION: Our study provides genetic evidence that mechanisms underlying higher liver iron content are likely systemic rather than organ specific, that higher central obesity is causally associated with higher liver iron, and that liver iron shares common aetiology with multiple metabolic and non-metabolic diseases. LAY SUMMARY: Excess liver iron content is common and is associated with liver diseases and metabolic diseases including diabetes, high blood pressure, and heart disease. We identified 3 genetic variants that are linked to an increased risk of developing higher liver iron content. We show that the same genetic variants are linked to higher risk of many diseases, but they may also be associated with some health advantages. Finally, we use genetic variants associated with waist-to-hip ratio as a tool to show that central obesity is causally associated with increased liver iron content.
Asunto(s)
Estudio de Asociación del Genoma Completo/métodos , Proteína de la Hemocromatosis/genética , Hemocromatosis/genética , Hepcidinas/genética , Hierro/sangre , Hígado/metabolismo , Adulto , Anciano , Biomarcadores/sangre , Estudios de Cohortes , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Análisis de la Aleatorización Mendeliana , Persona de Mediana Edad , Fenotipo , Polimorfismo de Nucleótido Simple , Reino UnidoRESUMEN
BACKGROUND: Accurate assessment of liver health prior to undertaking resectional liver surgery or chemoembolisation for primary and secondary cancers is essential for patient safety and optimal outcomes. LiverMultiScan™, an MRI-based technology, non-invasively quantifies hepatic fibroinflammatory disease, steatosis and iron content. We hypothesise that LiverMultiScan™can quantify liver health prior to surgery and inform the risk assessment for patients considering liver surgery or chemoembolization and seek to evaluate this technology in an operational environment. METHODS/DESIGN: HepaT1ca is an observational cohort study in two tertiary-referral liver surgery centres in the United Kingdom. The primary outcome is correlation between the pre-operative liver health assessment score (Hepatica score - calculated by weighting future remnant liver volume by liver inflammation and fibrosis (LIF) score) and the post-operative liver function composite integer-based risk (Hyder-Pawlik) score. With ethical approval and fully-informed consent, individuals considering liver surgery for primary or secondary cancer will undergo clinical assessment, blood sampling, and LiverMultiScan™multiparametric MRI before and after surgical liver resection or TACE. In nested cohorts of individuals undergoing chemotherapy prior to surgery, or those undergoing portal vein embolization (PVE) as an adjunct to surgery, an additional testing session prior to commencement of treatment will occur. Tissue will be examined histologically and by immunohistochemistry. Pre-operative liver health assessment scores and the post-operative risk scores will be correlated to define the ability of LiverMultiScan™to predict the risk of post-operative morbidity and mortality. Because technology performance in this setting is unknown, a pragmatic sample size will be used. For the primary outcome, n = 200 for the main cohort will allow detection of a minimum correlation coefficient of 0.2 with 5% significance and power of 80%. DISCUSSION: This study will refine the technology and clinical application of multiparametric MRI (including LiverMultiScan™), to quantify pre-existing liver health and predict post-intervention outcomes following liver resection. If successful, this study will advance the technology and support the use of multiparametric MRI as part of an enhanced pre-operative assessment to improve patient safety and to personalise operative risk assessment of liver surgery/non-surgical intervention. TRIAL REGISTRATION: This study is registered on ClinicalTrials.gov Identifier: NCT03213314 .
Asunto(s)
Protocolos Clínicos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/metabolismo , Hígado/metabolismo , Cuidados Preoperatorios , Ensayos Clínicos como Asunto , Manejo de la Enfermedad , Humanos , Hígado/patología , Hígado/cirugía , Pruebas de Función Hepática , Neoplasias Hepáticas/cirugía , Imagen por Resonancia MagnéticaRESUMEN
Femoroacetabular impingement (FAI), particularly cam morphology, is highly prevalent among elite hockey athletes. Moreover, hip and groin pain has become a common issue in hockey, with approximately 50% of European professional athletes reported to experience a hip or groin problem during a season. While most athletes will not miss training or competition due to this, restricted competitive performance and increased risk of reduced physical and psychological well-being are likely. Recent research suggests that the development of cam morphology is related to the repetitive shear stresses experienced at the hip joint during adolescence from skating. This condition likely increases the potential for intra-articular and extra-articular injuries in these athletes later in their careers. Research also indicates that the hip joint mechanics during forward skating substantially increase the possibility of sustaining a labral tear compared to other sports. Such an injury can increase femoral head movement within the joint, potentially causing secondary damage to the iliofemoral ligament, ligamentum teres and joint capsule. These injuries and the high density of nociceptors in the affected structures may explain the high prevalence of hip and groin pain in hockey athletes. Compensatory adaptations, such as reduced hip strength, stability, and range-of-motion (ROM) likely increase the opportunity for core muscle injuries and hip flexor and adductor injuries. Specifically, the limited hip ROM associated with cam morphology appears to exacerbate the risk of these injuries as there will be an increase in pubic symphysis stress and transverse strain during rotational movements. It is hoped that this article will assist practitioners currently working with hockey athletes to develop evidence-informed monitoring strategies and training interventions, aimed at reducing the incidence and severity of hip and groin problems, ultimately enhancing athlete performance and well-being. Therefore, the purpose of this clinical commentary was to examine current evidence on common hip pathologies in hockey athletes, exploring potential associations between hip and groin pain and the biomechanics of hockey activities. Level of Evidence: 5.
RESUMEN
OBJECTIVES: To determine the prevalence of organ impairment in long COVID patients at 6 and 12 months after initial symptoms and to explore links to clinical presentation. DESIGN: Prospective cohort study. PARTICIPANTS: Individuals. METHODS: In individuals recovered from acute COVID-19, we assessed symptoms, health status, and multi-organ tissue characterisation and function. SETTING: Two non-acute healthcare settings (Oxford and London). Physiological and biochemical investigations were performed at baseline on all individuals, and those with organ impairment were reassessed. MAIN OUTCOME MEASURES: Primary outcome was prevalence of single- and multi-organ impairment at 6 and 12 months post COVID-19. RESULTS: A total of 536 individuals (mean age 45 years, 73% female, 89% white, 32% healthcare workers, 13% acute COVID-19 hospitalisation) completed baseline assessment (median: 6 months post COVID-19); 331 (62%) with organ impairment or incidental findings had follow-up, with reduced symptom burden from baseline (median number of symptoms 10 and 3, at 6 and 12 months, respectively). Extreme breathlessness (38% and 30%), cognitive dysfunction (48% and 38%) and poor health-related quality of life (EQ-5D-5L < 0.7; 57% and 45%) were common at 6 and 12 months, and associated with female gender, younger age and single-organ impairment. Single- and multi-organ impairment were present in 69% and 23% at baseline, persisting in 59% and 27% at follow-up, respectively. CONCLUSIONS: Organ impairment persisted in 59% of 331 individuals followed up at 1 year post COVID-19, with implications for symptoms, quality of life and longer-term health, signalling the need for prevention and integrated care of long COVID.Trial Registration: ClinicalTrials.gov Identifier: NCT04369807.
Asunto(s)
COVID-19 , Humanos , Femenino , Persona de Mediana Edad , Masculino , COVID-19/epidemiología , SARS-CoV-2 , Síndrome Post Agudo de COVID-19 , Estudios Prospectivos , Calidad de Vida , Estudios LongitudinalesRESUMEN
BACKGROUND: Long COVID is associated with multiple symptoms and impairment in multiple organs. Cross-sectional studies have reported cardiac impairment to varying degrees by varying methodologies. Using cardiac MR (CMR), we investigated a 12-month trajectory of abnormalities in Long COVID. OBJECTIVES: To investigate cardiac abnormalities 1-year post-SARS-CoV-2 infection. METHODS: 534 individuals with Long COVID underwent CMR (T1/T2 mapping, cardiac mass, volumes, function and strain) and multiorgan MRI at 6 months (IQR 4.3-7.3) since first post-COVID-19 symptoms. 330 were rescanned at 12.6 (IQR 11.4-14.2) months if abnormal baseline findings were reported. Symptoms, questionnaires and blood samples were collected at both time points. CMR abnormalities were defined as ≥1 of low left or right ventricular ejection fraction (LVEF), high left or right ventricular end diastolic volume, low 3D left ventricular global longitudinal strain (GLS), or elevated native T1 in ≥3 cardiac segments. Significant change over time was reported by comparison with 92 healthy controls. RESULTS: Technical success of multiorgan and CMR assessment in non-acute settings was 99.1% and 99.6% at baseline, and 98.3% and 98.8% at follow-up. Of individuals with Long COVID, 102/534 (19%) had CMR abnormalities at baseline; 71/102 had complete paired data at 12 months. Of those, 58% presented with ongoing CMR abnormalities at 12 months. High sensitivity cardiac troponin I and B-type natriuretic peptide were not predictive of CMR findings, symptoms or clinical outcomes. At baseline, low LVEF was associated with persistent CMR abnormality, abnormal GLS associated with low quality of life and abnormal T1 in at least three segments was associated with better clinical outcomes at 12 months. CONCLUSION: CMR abnormalities (left entricular or right ventricular dysfunction/dilatation and/or abnormal T1mapping), occurred in one in five individuals with Long COVID at 6 months, persisting in over half of those at 12 months. Cardiac-related blood biomarkers could not identify CMR abnormalities in Long COVID. TRIAL REGISTRATION NUMBER: NCT04369807.
Asunto(s)
COVID-19 , Humanos , Volumen Sistólico , Síndrome Post Agudo de COVID-19 , Estudios Transversales , Calidad de Vida , Valor Predictivo de las Pruebas , SARS-CoV-2 , Función Ventricular DerechaRESUMEN
INTRODUCTION: Radiogenomic analysis of patients being considered for liver resection is seldom performed in the clinic despite recent evidence indicating that quantitative MRI could improve posthepatectomy outcomes. Meanwhile, the increasingly accessible results from whole genome sequencing reporting on clinically actionable genetic biomarkers are yet to be fully integrated into the clinical care pathway. METHODS AND ANALYSIS: A prospective observational cohort study of up to 200 participants is planned, recruiting adults with primary or secondary liver cancer being considered for liver resection at Hampshire Hospitals NHS Foundation Trust. The data will be evaluated to address the primary endpoint to calculate the proportion of participants in which the results from whole genome sequencing would have resulted in a change in clinical management. Participants will be offered an additional non-invasive quantitative MRI scan prior to the operation and the impact of the imaging results on treatment decision-making will be evaluated. ETHICS AND DISSEMINATION: This study was reviewed by the NHS Health Research Authority and given favourable opinion by the Brighton and Sussex Research Ethics Committee (REC reference: 20/PR/0222). Research findings will be discussed with a patient and public involvement and engagement group, presented at relevant scientific conferences and published in open access journals. TRIAL REGISTRATION NUMBER: NCT04597710.
Asunto(s)
Neoplasias Hepáticas , Medicina de Precisión , Adulto , Estudios de Cohortes , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/genética , Imagen por Resonancia Magnética , Estudios Observacionales como Asunto , Estudios Prospectivos , Secuenciación Completa del GenomaRESUMEN
Wilson disease (WD) is a liver disorder characterized by improper copper metabolism. Although non-invasive tools are currently used to support diagnosis and management, this is still an area of unmet need, as patients present with a wide range of symptoms. Our aim was to investigate the potential utility of multiparametric magnetic resonance imaging (mpMRI) and quantitative magnetic resonance cholangiopancreatography (MRCP+) to support patient management. MRI examinations of 7 children and young adults aged 8-16 years (six at diagnosis) were performed alongside a standard of care clinical and histological examination. Images were quantitatively analyzed to derive metrics of liver (corrected T1 (cT1; fibro-inflammation), MR liver fat (proton density fat fraction; PDFF)), and biliary health (MRCP+). MRI-PDFF provided a more dynamic characterization of fat compared with that provided by ultrasound. Those with elevated histological scores of fibrosis, inflammation, and steatosis had elevated mpMRI values. MRCP+ managed to identify dilatations in the biliary tree which were not observed during the standard of care examination. mpMRI and MRCP+ metrics show early promise as markers to assess both liver and biliary health in Wilson disease. Investigations to understand and explore the utility of these markers are warranted and should be performed.
RESUMEN
Background: In autoimmune hepatitis (AIH), clinical practice and treatment guidelines frequently diverge as a reflection of disease heterogeneity and challenges in achieving standardised care. We sought to explore the utility of multiparametric (mp) MR in patients with AIH, and the impact of this technology on physicians' decision making and intended patient management. Methods: 82 AIH patients, recruited from two sites between June and November 2019 as part of an observational cohort study, underwent non-contrast MRI alongside their standard clinical investigations. Correlations between iron-corrected T1 (cT1) and other markers of disease were investigated alongside the utility of imaging markers to risk stratify patients in biochemical remission. The impact of mpMR on clinical decision making was evaluated using pairwise t-tests. The discriminatory ability of the imaging markers was assessed using area under the receiver operating characteristic curves (AUCs). Findings: cT1 had a significant impact on clinician intended patient management (p<0.0001). cT1 correlated with ALT (p = 0.0005), AST (p<0.001), IgG (p = 0.0005), and liver stiffness (p<0.0001). Patients in deep biochemical remission (N = 11; AST/ALT <50% upper limit of normal [ULN] and IgG <12 g/L) had low cT1, while 7/34 in normal biochemical remission (AST/ALT between 50 and 100% of ULN) had high cT1 and were at risk of disease flare. cT1 measures of disease heterogeneity, ALP and bilirubin made the best predictor of those not in biochemical remission (AUC:0.85). Interpretation: This study investigates the impact of mpMR results on intended clinical management in a real world setting. Findings showed that mpMR demonstrated a significant impact on clinical management of AIH and has the potential to inform patient risk stratification. Funding: This paper presents independent research supported by the Innovate UK grant (104,915).
RESUMEN
PURPOSE: Volumetric and health assessment of the liver is crucial to avoid poor post-operative outcomes following liver resection surgery. No current methods allow for concurrent and accurate measurement of both Couinaud segmental volumes for future liver remnant estimation and liver health using non-invasive imaging. In this study, we demonstrate the accuracy and precision of segmental volume measurements using new medical software, Hepatica™. METHODS: MRI scans from 48 volunteers from three previous studies were used in this analysis. Measurements obtained from Hepatica™ were compared with OsiriX. Time required per case with each software was also compared. The performance of technicians and experienced radiologists as well as the repeatability and reproducibility were compared using Bland-Altman plots and limits of agreement. RESULTS: High levels of agreement and lower inter-operator variability for liver volume measurements were shown between Hepatica™ and existing methods for liver volumetry (mean Dice score 0.947 ± 0.010). A high consistency between technicians and experienced radiologists using the device for volumetry was shown (± 3.5% of total liver volume) as well as low inter-observer and intra-observer variability. Tight limits of agreement were shown between repeated Couinaud segment volume (+ 3.4% of whole liver), segmental liver fibroinflammation and segmental liver fat measurements in the same participant on the same scanner and between different scanners. An underestimation of whole-liver volume was observed between three non-reference scanners. CONCLUSION: Hepatica™ produces accurate and precise whole-liver and Couinaud segment volume and liver tissue characteristic measurements. Measurements are consistent between trained technicians and experienced radiologists.
Asunto(s)
Aprendizaje Profundo , Hepatectomía , Humanos , Hígado/diagnóstico por imagen , Hígado/cirugía , Imagen por Resonancia Magnética , Variaciones Dependientes del Observador , Reproducibilidad de los ResultadosRESUMEN
Noninvasive monitoring of disease activity in autoimmune hepatitis (AIH) has potential advantages for patients for whom liver biopsy is invasive and with risk. We sought to understand the association of multiparametric magnetic resonance imaging (mpMRI) with clinical course of patients with AIH. We prospectively recruited 62 patients (median age, 55 years; 82% women) with clinically confirmed AIH. At recruitment, patients underwent mpMRI with LiverMultiScan alongside clinical investigations, which were repeated after 12-18 months. Associations between iron-corrected T1 (cT1) and other markers of disease were investigated at baseline and at follow-up. Discriminative performance of cT1, liver stiffness, and enhanced liver fibrosis (ELF) to identify those who failed to maintain remission over follow-up was investigated using the areas under the receiver operating characteristic curves (AUCs). Baseline cT1 correlated with alanine aminotransferase (Spearman's correlation coefficient [r S] = 0.28, P = 0.028), aspartate aminotransferase (r S = 0.26, P = 0.038), international normalized ratio (r S = 0.35 P = 0.005), Model for End-Stage Liver Disease (r S = 0.32, P = 0.020), ELF (r S = 0.29, P = 0.022), and liver stiffness r S = 0.51, P < 0.001). After excluding those not in remission at baseline (n = 12), 32% of the remainder failed to maintain remission during follow-up. Failure to maintain remission was associated with significant increases in cT1 over follow-up (AUC, 0.71; 95% confidence interval [CI], 0.52-0.90; P = 0.035) but not with changes in liver stiffness (AUC, 0.68; 95% CI, 0.49-0.87; P = 0.067) or ELF (AUC, 0.57; 95% CI, 0.37-0.78; P = 0.502). cT1 measured at baseline was a significant predictor of future loss of biochemical remission (AUC, 0.68; 95% CI, 0.53-0.83; P = 0.042); neither liver stiffness (AUC, 0.53; 95% CI, 0.34-0.71; P = 0.749) nor ELF (AUC, 0.52; 95% CI, 0.33-0.70; P = 0.843) were significant predictors of loss of biochemical remission. Conclusion: Noninvasive mpMRI has potential to contribute to risk stratification in patients with AIH.
RESUMEN
Autoimmune hepatitis (AIH) and autoimmune sclerosing cholangitis (ASC) are two very closely related autoimmune liver diseases with overlapping clinical features and similar management strategies. The purpose of this study was to assess the utility of quantitative imaging markers to distinguish ASC from AIH in paediatrics. 66 participants (N = 52 AIH, N = 14 ASC) aged 14.4 ± 3.3 years scheduled to undergo routine biopsy and baseline serum liver biochemistry testing were invited to undergo MRI (non-contrast abdominal MRI and 3D fast spin-echo MRCP). Multiparametric MRI was used to measure fibro-inflammation with corrected T1 (cT1), while the biliary tree was modelled using quantitative MRCP (MRCP +). Mann-Whitney U tests were performed to compare liver function tests with imaging markers between patient groups (ASC vs AIH). Receiver operating characteristic curves and stepwise logistic regressions were used to identify the best combination of markers to discriminate between ASC and AIH. Correlations between liver function tests and imaging markers were performed using Spearman's rank correlation. cT1 was significantly correlated with liver function tests (range 0.33 ≤ R ≤ 56, p < 0.05), as well as with fibrosis, lobular and portal inflammation (range 0.31 ≤ R ≤ 42, p < 0.05). 19 MRCP + metrics correlated significantly with liver function tests (range 0.29 ≤ R ≤ 0.43, p < 0.05). GGT and MRCP + metrics were significantly higher in ASC compared to those with AIH. The best multivariable model for distinguishing ASC from AIH included total number of ducts and the sum of relative severity of both strictures and dilatations AUC: 0.91 (95% CI 0.78-1). Quantitative MRCP metrics are a good discriminator of ASC from AIH.