Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Revista
Intervalo de año de publicación
1.
Nature ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977019

RESUMEN

As the closest transiting hot Jupiter to Earth, HD 189733b has been the benchmark planet for atmospheric characterization 1,2,3. It has also been the anchor point for much of our theoretical understanding of exoplanet atmospheres from composition 4, chemistry 5,6, aerosols 7 to atmospheric dynamics 8, escape 9 and modeling techniques 10,11. Prior studies of HD 189733b have detected carbon and oxygen-bearing molecules H2O and CO 12,13 in the atmosphere. The presence of CO2 and CH4 has been claimed 14,15 but later disputed 12,16,17. The inferred metallicity based on these measurements, a key parameter in tracing planet formation locations 18, varies from depletion 19,20 to enhancement 21,22, hindered by limited wavelength coverage and precision of the observations. Here we report detections of H2O (13.4 sigma), CO2 (11.2 sigma), CO (5 sigma), and H2S (4.5 sigma) in the transmission spectrum (2.4-5 micron) of HD 189733b. With an equilibrium temperature of ~ 1200K, H2O, CO, and H2S are the main reservoirs for oxygen, carbon, and sulfur. Based on the measured abundances of these three major volatile elements, we infer an atmospheric metallicity of 3-5 times stellar. The upper limit on the methane abundance at 5 sigma is 0.1 ppm which indicates a low carbon-to-oxygen ratio (<0.2), suggesting formation through the accretion of water-rich icy planetesimals. The low oxygen-to-sulfur and carbon-to-sulfur ratios also support the planetesimal accretion formation pathway 23.

2.
Nature ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009005

RESUMEN

Transmission spectroscopy has been a workhorse technique over the past two decades to constrain the physical and chemical properties of exoplanet atmospheres 1-5. One of its classical key assumptions is that the portion of the atmosphere it probes - the terminator region - is homogeneous. Several works in the past decade, however, have put this into question for highly irradiated, hot (Teq ≳ 1000 K) gas giant exoplanets both empirically 6-10 and via 3-dimensional modelling 11-17. While models predict clear differences between the evening (day-to-night) and morning (night-to-day) terminators, direct morning/evening transmission spectra in a wide wavelength range has not been reported for an exoplanet to date. Under the assumption of precise and accurate orbital parameters on WASP-39 b, here we report the detection of inhomogeneous terminators on the exoplanet WASP-39 b, which allows us to retrieve its morning and evening transmission spectra in the near-infrared (2 - 5 µm) using JWST. We observe larger transit depths in the evening which are, on average, 405±88 ppm larger than the morning ones, also having qualitatively larger features than the morning spectrum. The spectra are best explained by models in which the evening terminator is hotter than the morning terminator by 177 - 57 + 65 K with both terminators having C/O ratios consistent with solar. General circulation models (GCMs) predict temperature differences broadly consistent with the above value and point towards a cloudy morning terminator and a clearer evening terminator.

3.
Nature ; 620(7972): 67-71, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37164036

RESUMEN

There are no planets intermediate in size between Earth and Neptune in our Solar System, yet these objects are found around a substantial fraction of other stars1. Population statistics show that close-in planets in this size range bifurcate into two classes on the basis of their radii2,3. It is proposed that the group with larger radii (referred to as 'sub-Neptunes') is distinguished by having hydrogen-dominated atmospheres that are a few percent of the total mass of the planets4. GJ 1214b is an archetype sub-Neptune that has been observed extensively using transmission spectroscopy to test this hypothesis5-14. However, the measured spectra are featureless, and thus inconclusive, due to the presence of high-altitude aerosols in the planet's atmosphere. Here we report a spectroscopic thermal phase curve of GJ 1214b obtained with the James Webb Space Telescope (JWST) in the mid-infrared. The dayside and nightside spectra (average brightness temperatures of 553 ± 9 and 437 ± 19 K, respectively) each show more than 3σ evidence of absorption features, with H2O as the most likely cause in both. The measured global thermal emission implies that GJ 1214b's Bond albedo is 0.51 ± 0.06. Comparison between the spectroscopic phase curve data and three-dimensional models of GJ 1214b reveal a planet with a high metallicity atmosphere blanketed by a thick and highly reflective layer of clouds or haze.

4.
Nature ; 620(7973): 292-298, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37257843

RESUMEN

Close-in giant exoplanets with temperatures greater than 2,000 K ('ultra-hot Jupiters') have been the subject of extensive efforts to determine their atmospheric properties using thermal emission measurements from the Hubble Space Telescope (HST) and Spitzer Space Telescope1-3. However, previous studies have yielded inconsistent results because the small sizes of the spectral features and the limited information content of the data resulted in high sensitivity to the varying assumptions made in the treatment of instrument systematics and the atmospheric retrieval analysis3-12. Here we present a dayside thermal emission spectrum of the ultra-hot Jupiter WASP-18b obtained with the NIRISS13 instrument on the JWST. The data span 0.85 to 2.85 µm in wavelength at an average resolving power of 400 and exhibit minimal systematics. The spectrum shows three water emission features (at >6σ confidence) and evidence for optical opacity, possibly attributable to H-, TiO and VO (combined significance of 3.8σ). Models that fit the data require a thermal inversion, molecular dissociation as predicted by chemical equilibrium, a solar heavy-element abundance ('metallicity', [Formula: see text] times solar) and a carbon-to-oxygen (C/O) ratio less than unity. The data also yield a dayside brightness temperature map, which shows a peak in temperature near the substellar point that decreases steeply and symmetrically with longitude towards the terminators.

5.
Nature ; 598(7882): 580-584, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34707303

RESUMEN

Measurements of the atmospheric carbon (C) and oxygen (O) relative to hydrogen (H) in hot Jupiters (relative to their host stars) provide insight into their formation location and subsequent orbital migration1,2. Hot Jupiters that form beyond the major volatile (H2O/CO/CO2) ice lines and subsequently migrate post disk-dissipation are predicted have atmospheric carbon-to-oxygen ratios (C/O) near 1 and subsolar metallicities2, whereas planets that migrate through the disk before dissipation are predicted to be heavily polluted by infalling O-rich icy planetesimals, resulting in C/O < 0.5 and super-solar metallicities1,2. Previous observations of hot Jupiters have been able to provide bounded constraints on either H2O (refs. 3-5) or CO (refs. 6,7), but not both for the same planet, leaving uncertain4 the true elemental C and O inventory and subsequent C/O and metallicity determinations. Here we report spectroscopic observations of a typical transiting hot Jupiter, WASP-77Ab. From these, we determine the atmospheric gas volume mixing ratio constraints on both H2O and CO (9.5 × 10-5-1.5 × 10-4 and 1.2 × 10-4-2.6 × 10-4, respectively). From these bounded constraints, we are able to derive the atmospheric C/H ([Formula: see text] × solar) and O/H ([Formula: see text] × solar) abundances and the corresponding atmospheric carbon-to-oxygen ratio (C/O = 0.59 ± 0.08; the solar value is 0.55). The sub-solar (C+O)/H ([Formula: see text] × solar) is suggestive of a metal-depleted atmosphere relative to what is expected for Jovian-like planets1 while the near solar value of C/O rules out the disk-free migration/C-rich2 atmosphere scenario.

7.
Nature ; 513(7519): 493-4, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25254470
8.
Nature ; 480(7378): 460-1, 2011 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-22193093
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA