RESUMEN
Tumor necrosis factor-α (TNF-α) inhibitors are highly effective in suppressing inflammation in ankylosing spondylitis (AS) patients, and operate by suppression of TFN-α and downstream immunological pathways. To determine the mechanisms of action of TNF-α inhibitors in AS patients, we used transcriptomic and bioinformatic approaches on peripheral blood mononuclear cells from AS patients pre and post treatment. We found 656 differentially expressed genes, including the genome-wide significant AS-associated genes, IL6R, NOTCH1, IL10, CXCR2 and TNFRSF1A. A distinctive gene expression profile was found between male and female patients, mainly because of sex chromosome-linked genes and interleukin 17 receptor C, potentially accounting for the differences in clinical manifestation and treatment response between the genders. In addition to immune and inflammation regulatory pathways, like intestinal immune network for IgA production, cytokine-cytokine receptor interaction, Ras signaling pathway, allograft rejection and hematopoietic cell lineage, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analyses revealed that infection-associated pathways (influenza A and toxoplasmosis) and metabolism-associated pathways were involved in response to TNF-α inhibitor treatment, providing insight into the mechanism of TNF-α inhibitors.
Asunto(s)
Espondilitis Anquilosante/genética , Transcriptoma , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Adulto , Femenino , Perfilación de la Expresión Génica , Humanos , Interleucina-10/genética , Interleucina-10/metabolismo , Masculino , Persona de Mediana Edad , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Espondilitis Anquilosante/tratamiento farmacológico , Espondilitis Anquilosante/metabolismoRESUMEN
The mechanism by which human leukocyte antigen B27 (HLA-B27) contributes to ankylosing spondylitis (AS) remains unclear. Genetic studies demonstrate that association with and interaction between polymorphisms of endoplasmic reticulum aminopeptidase 1 (ERAP1) and HLA-B27 influence the risk of AS. It has been hypothesised that ERAP1-mediated HLA-B27 misfolding increases endoplasmic reticulum (ER) stress, driving an interleukin (IL) 23-dependent, pro-inflammatory immune response. We tested the hypothesis that AS-risk ERAP1 variants increase ER-stress and concomitant pro-inflammatory cytokine production in HLA-B27(+) but not HLA-B27(-) AS patients or controls. Forty-nine AS cases and 22 healthy controls were grouped according to HLA-B27 status and AS-associated ERAP1 rs30187 genotypes: HLA-B27(+)ERAP1(risk), HLA-B27(+)ERAP1(protective), HLA-B27(-)ERAP1(risk) and HLA-B27(-)ERAP1(protective). Expression levels of ER-stress markers GRP78 (8 kDa glucose-regulated protein), CHOP (C/EBP-homologous protein) and inflammatory cytokines were determined in peripheral blood mononuclear cell and ileal biopsies. We found no differences in ER-stress gene expression between HLA-B27(+) and HLA-B27(-) cases or healthy controls, or between cases or controls stratified by carriage of ERAP1 risk or protective alleles in the presence or absence of HLA-B27. No differences were observed between expression of IL17A or TNF (tumour necrosis factor) in HLA-B27(+)ERAP1(risk), HLA-B27(+)ERAP1(protective) and HLA-B27(-)ERAP1(protective) cases. These data demonstrate that aberrant ERAP1 activity and HLA-B27 carriage does not alter ER-stress levels in AS, suggesting that ERAP1 and HLA-B27 may influence disease susceptibility through other mechanisms.