Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Electrocardiol ; 81: 201-206, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37778217

RESUMEN

There has been a proliferation of machine learning (ML) electrocardiogram (ECG) classification algorithms reaching >85% accuracy for various cardiac pathologies. Despite the high accuracy at individual institutions, challenges remain when it comes to multi-center deployment. Transfer learning (TL) is a technique in which a model trained for a specific task is repurposed for another related task, in this case ECG ML model trained at one institution is fine-tuned to be utilized to classify ECGs at another institution. Models trained at one institution, however, might not be generalizable for accurate classification when deployed broadly due to differences in type, time, and sampling rate of traditional ECG acquisition. In this study, we evaluate the performance of time domain (TD) and frequency domain (FD) convolutional neural network (CNN) classification models in an inter-institutional scenario leveraging three different publicly available datasets. The larger PTB-XL ECG dataset was used to initially train TD and FD CNN models for atrial fibrillation (AFIB) classification. The models were then tested on two different data sets, Lobachevsky University Electrocardiography Database (LUDB) and Korea University Medical Center database (KURIAS). The FD model was able to retain most of its performance (>0.81 F1-score), whereas TD was highly affected (<0.53 F1-score) by the dataset variations, even with TL applied. The FD CNN showed superior robustness to cross-institutional variability and has potential for widespread application with no compromise to ECG classification performance.


Asunto(s)
Fibrilación Atrial , Humanos , Fibrilación Atrial/diagnóstico , Electrocardiografía/métodos , Redes Neurales de la Computación , Algoritmos , Aprendizaje Automático
2.
J Electrocardiol ; 80: 24-33, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37141727

RESUMEN

There has been a proliferation of machine learning (ML) electrocardiogram (ECG) classification algorithms reaching > 85% accuracy for various cardiac pathologies. Although the accuracy within institutions might be high, models trained at one institution might not be generalizable enough for accurate detection when deployed in other institutions due to differences in type of signal acquisition, sampling frequency, time of acquisition, device noise characteristics and number of leads. In this proof-of-concept study, we leverage the publicly available PTB-XL dataset to investigate the use of time-domain (TD) and frequency-domain (FD) convolutional neural networks (CNN) to detect myocardial infarction (MI), ST/T-wave changes (STTC), atrial fibrillation (AFIB) and sinus arrhythmia (SARRH). To simulate interinstitutional deployment, the TD and FD implementations were also compared on adapted test sets using different sampling frequencies 50 Hz, 100 Hz and 250 Hz, and acquisition times of 5 s and 10s at 100 Hz sampling frequency from the training dataset. When tested on the original sampling frequency and duration, the FD approach showed comparable results to TD for MI (0.92 FD - 0.93 TD AUROC) and STTC (0.94 FD - 0.95 TD AUROC), and better performance for AFIB (0.99 FD - 0.86 TD AUROC) and SARRH (0.91 FD - 0.65 TD AUROC). Although both methods were robust to changes in sampling frequency, changes in acquisition time were detrimental to the TD MI and STTC AUROCs, at 0.72 and 0.58 respectively. Alternatively, the FD approach was able to maintain the same level of performance, and, therefore, showed better potential for interinstitutional deployment.


Asunto(s)
Fibrilación Atrial , Infarto del Miocardio , Humanos , Fibrilación Atrial/diagnóstico , Electrocardiografía , Redes Neurales de la Computación , Algoritmos , Aprendizaje Automático , Infarto del Miocardio/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA