Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(35): 21079-21087, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32817563

RESUMEN

The amplitude of the atmospheric CO2 seasonal cycle has increased by 30 to 50% in the Northern Hemisphere (NH) since the 1960s, suggesting widespread ecological changes in the northern extratropics. However, substantial uncertainty remains in the continental and regional drivers of this prominent amplitude increase. Here we present a quantitative regional attribution of CO2 seasonal amplification over the past 4 decades, using a tagged atmospheric transport model prescribed with observationally constrained fluxes. We find that seasonal flux changes in Siberian and temperate ecosystems together shape the observed amplitude increases in the NH. At the surface of northern high latitudes, enhanced seasonal carbon exchange in Siberia is the dominant contributor (followed by temperate ecosystems). Arctic-boreal North America shows much smaller changes in flux seasonality and has only localized impacts. These continental contrasts, based on an atmospheric approach, corroborate heterogeneous vegetation greening and browning trends from field and remote-sensing observations, providing independent evidence for regionally divergent ecological responses and carbon dynamics to global change drivers. Over surface midlatitudes and throughout the midtroposphere, increased seasonal carbon exchange in temperate ecosystems is the dominant contributor to CO2 amplification, albeit with considerable contributions from Siberia. Representing the mechanisms that control the high-latitude asymmetry in flux amplification found in this study should be an important goal for mechanistic land surface models moving forward.


Asunto(s)
Atmósfera/química , Dióxido de Carbono/química , Carbono/química , Regiones Árticas , Ciclo del Carbono/fisiología , Dióxido de Carbono/análisis , Clima , Cambio Climático , Ecosistema , América del Norte , Fotosíntesis , Estaciones del Año , Siberia
2.
Global Biogeochem Cycles ; 35(9): e2021GB007034, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35860341

RESUMEN

Earth system models are intended to make long-term projections, but they can be evaluated at interannual and seasonal time scales. Although the Community Earth System Model (CESM2) showed improvements in a number of terrestrial carbon cycle benchmarks, relative to its predecessor, our analysis suggests that the interannual variability (IAV) in net terrestrial carbon fluxes did not show similar improvements. The model simulated low IAV of net ecosystem production (NEP), resulting in a weaker than observed sensitivity of the carbon cycle to climate variability. Low IAV in net fluxes likely resulted from low variability in gross primary productivity (GPP)-especially in the tropics-and a high covariation between GPP and ecosystem respiration. Although lower than observed, the IAV of NEP had significant climate sensitivities, with positive NEP anomalies associated with warmer and drier conditions in high latitudes, and with wetter and cooler conditions in mid and low latitudes. We identified two dominant modes of seasonal variability in carbon cycle flux anomalies in our fully coupled CESM2 simulations that are characterized by seasonal amplification and redistribution of ecosystem fluxes. Seasonal amplification of net and gross carbon fluxes showed climate sensitivities mirroring those of annual fluxes. Seasonal redistribution of carbon fluxes is initiated by springtime temperature anomalies, but subsequently negative feedbacks in soil moisture during the summer and fall result in net annual carbon losses from land. These modes of variability are also seen in satellite proxies of GPP, suggesting that CESM2 appropriately represents regional sensitivities of photosynthesis to climate variability on seasonal time scales.

3.
Global Biogeochem Cycles ; 28(11): 1295-1310, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26074665

RESUMEN

The response of the carbon cycle in prognostic Earth system models (ESMs) contributes significant uncertainty to projections of global climate change. Quantifying contributions of known drivers of interannual variability in the growth rate of atmospheric carbon dioxide (CO2) is important for improving the representation of terrestrial ecosystem processes in these ESMs. Several recent studies have identified the temperature dependence of tropical net ecosystem exchange (NEE) as a primary driver of this variability by analyzing a single, globally averaged time series of CO2 anomalies. Here we examined how the temporal evolution of CO2 in different latitude bands may be used to separate contributions from temperature stress, drought stress, and fire emissions to CO2 variability. We developed atmospheric CO2 patterns from each of these mechanisms during 1997-2011 using an atmospheric transport model. NEE responses to temperature, NEE responses to drought, and fire emissions all contributed significantly to CO2 variability in each latitude band, suggesting that no single mechanism was the dominant driver. We found that the sum of drought and fire contributions to CO2 variability exceeded direct NEE responses to temperature in both the Northern and Southern Hemispheres. Additional sensitivity tests revealed that these contributions are masked by temporal and spatial smoothing of CO2 observations. Accounting for fires, the sensitivity of tropical NEE to temperature stress decreased by 25% to 2.9 ± 0.4 Pg C yr-1 K-1. These results underscore the need for accurate attribution of the drivers of CO2 variability prior to using contemporary observations to constrain long-term ESM responses.

4.
J Geophys Res Atmos ; 128(3): e2022JD036696, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-37034456

RESUMEN

Variations in atmosphere total column-mean CO2 (XCO2) collected by the National Aeronautics and Space Administration's Orbiting Carbon Observatory-2 satellite can be used to constrain surface carbon fluxes if the influence of atmospheric transport and observation errors on the data is known and accounted for. Due to sparse validation data, the portions of fine-scale variability in XCO2 driven by fluxes, transport, or retrieval errors remain uncertain, particularly over the ocean. To better understand these drivers, we characterize variability in OCO-2 Level 2 version 10 XCO2 from the seasonal scale, synoptic-scale (order of days, thousands of kilometers), and mesoscale (within-day, hundreds of kilometers) for 10 biomes over North America and adjacent ocean basins. Seasonal and synoptic variations in XCO2 reflect real geophysical drivers (transport and fluxes), following large-scale atmospheric circulation and the north-south distribution of biosphere carbon uptake. In contrast, geostatistical analysis of mesoscale and finer variability shows that real signals are obscured by systematic biases across the domain. Spatial correlations in along-track XCO2 are much shorter and spatially coherent variability is much larger in magnitude than can be attributed to fluxes or transport. We characterize random and coherent along-track XCO2 variability in addition to quantifying uncertainty in XCO2 aggregates across typical lengths used in inverse modeling. Even over the ocean, correlated errors decrease the independence and increase uncertainty in XCO2. We discuss the utility of computing geostatistical parameters and demonstrate their importance for XCO2 science applications spanning from data reprocessing and algorithm development to error estimation and carbon flux inference.

5.
Appl Opt ; 46(21): 4774-9, 2007 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-17609726

RESUMEN

We present a method to reduce the impact of source brightness fluctuations (SBFs) on spectra recorded by Fourier-transform spectrometry (FTS). Interferograms are recorded without AC coupling of the detector signal (DC mode). The SBF are determined by low-pass filtering of the DC interferograms, which are then reweighted by the low-pass, smoothed signal. Atmospheric solar absorption interferograms recorded in DC mode have been processed with and without this technique, and we demonstrate its efficacy in producing more consistent retrievals of atmospheric composition. We show that the reweighting algorithm improves retrievals from interferograms subject to both gray and nongray intensity fluctuations, making the algorithm applicable to atmospheric data contaminated by significant amounts of aerosol or cloud cover.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA