Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
EMBO Rep ; 18(6): 914-928, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28487353

RESUMEN

ATRX is a chromatin remodelling factor found at a wide range of tandemly repeated sequences including telomeres (TTAGGG)n ATRX mutations are found in nearly all tumours that maintain their telomeres via the alternative lengthening of telomere (ALT) pathway, and ATRX is known to suppress this pathway. Here, we show that recruitment of ATRX to telomeric repeats depends on repeat number, orientation and, critically, on repeat transcription. Importantly, the transcribed telomeric repeats form RNA-DNA hybrids (R-loops) whose abundance correlates with the recruitment of ATRX Here, we show loss of ATRX is also associated with increased R-loop formation. Our data suggest that the presence of ATRX at telomeres may have a central role in suppressing deleterious DNA secondary structures that form at transcribed telomeric repeats, and this may account for the increased DNA damage, stalling of replication and homology-directed repair previously observed upon loss of ATRX function.


Asunto(s)
Ensamble y Desensamble de Cromatina , ADN/genética , ARN/genética , Telómero/genética , Telómero/metabolismo , Proteína Nuclear Ligada al Cromosoma X/metabolismo , Cromatina , ADN/química , Daño del ADN , Replicación del ADN , G-Cuádruplex , Humanos , Homeostasis del Telómero/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Proteína Nuclear Ligada al Cromosoma X/deficiencia , Proteína Nuclear Ligada al Cromosoma X/genética
2.
Nat Commun ; 12(1): 223, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33431820

RESUMEN

Enhancers are DNA sequences that enable complex temporal and tissue-specific regulation of genes in higher eukaryotes. Although it is not entirely clear how enhancer-promoter interactions can increase gene expression, this proximity has been observed in multiple systems at multiple loci and is thought to be essential for the maintenance of gene expression. Bromodomain and Extra-Terminal domain (BET) and Mediator proteins have been shown capable of forming phase condensates and are thought to be essential for super-enhancer function. Here, we show that targeting of cells with inhibitors of BET proteins or pharmacological degradation of BET protein Bromodomain-containing protein 4 (BRD4) has a strong impact on transcription but very little impact on enhancer-promoter interactions. Dissolving phase condensates reduces BRD4 and Mediator binding at enhancers and can also strongly affect gene transcription, without disrupting enhancer-promoter interactions. These results suggest that activation of transcription and maintenance of enhancer-promoter interactions are separable events. Our findings further indicate that enhancer-promoter interactions are not dependent on high levels of BRD4 and Mediator, and are likely maintained by a complex set of factors including additional activator complexes and, at some sites, CTCF and cohesin.


Asunto(s)
Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Transcripción Genética , Factor de Unión a CCCTC/metabolismo , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Glicoles/farmacología , Histonas/metabolismo , Humanos , Leucemia/genética , Leucemia/patología , Modelos Genéticos , Unión Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas c-myc/genética , Transcripción Genética/efectos de los fármacos , Cohesinas
3.
Nat Commun ; 12(1): 531, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33483495

RESUMEN

Chromosome conformation capture (3C) provides an adaptable tool for studying diverse biological questions. Current 3C methods generally provide either low-resolution interaction profiles across the entire genome, or high-resolution interaction profiles at limited numbers of loci. Due to technical limitations, generation of reproducible high-resolution interaction profiles has not been achieved at genome-wide scale. Here, to overcome this barrier, we systematically test each step of 3C and report two improvements over current methods. We show that up to 30% of reporter events generated using the popular in situ 3C method arise from ligations between two individual nuclei, but this noise can be almost entirely eliminated by isolating intact nuclei after ligation. Using Nuclear-Titrated Capture-C, we generate reproducible high-resolution genome-wide 3C interaction profiles by targeting 8055 gene promoters in erythroid cells. By pairing high-resolution 3C interaction calls with nascent gene expression we interrogate the role of promoter hubs and super-enhancers in gene regulation.


Asunto(s)
Núcleo Celular/genética , Cromatina/genética , Células Eritroides/metabolismo , Genoma Humano/genética , Estudio de Asociación del Genoma Completo/métodos , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Células Cultivadas , Mapeo Cromosómico/métodos , Biología Computacional/métodos , Regulación de la Expresión Génica , Genómica/métodos , Humanos , Ratones Endogámicos C57BL , Ratones Endogámicos CBA
4.
Nat Commun ; 11(1): 2722, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32483172

RESUMEN

Mammalian gene expression patterns are controlled by regulatory elements, which interact within topologically associating domains (TADs). The relationship between activation of regulatory elements, formation of structural chromatin interactions and gene expression during development is unclear. Here, we present Tiled-C, a low-input chromosome conformation capture (3C) technique. We use this approach to study chromatin architecture at high spatial and temporal resolution through in vivo mouse erythroid differentiation. Integrated analysis of chromatin accessibility and single-cell expression data shows that regulatory elements gradually become accessible within pre-existing TADs during early differentiation. This is followed by structural re-organization within the TAD and formation of specific contacts between enhancers and promoters. Our high-resolution data show that these enhancer-promoter interactions are not established prior to gene expression, but formed gradually during differentiation, concomitant with progressive upregulation of gene activity. Together, these results provide new insight into the close, interdependent relationship between chromatin architecture and gene regulation during development.


Asunto(s)
Diferenciación Celular/genética , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica , Genoma/genética , Regiones Promotoras Genéticas/genética , Células Madre/metabolismo , Animales , Células Cultivadas , Cromatina/genética , Cromosomas de los Mamíferos/genética , Femenino , Perfilación de la Expresión Génica/métodos , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Células Madre/citología
5.
Nat Commun ; 9(1): 1622, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29692408

RESUMEN

Acute Myeloid Leukemia (AML) with MLL gene rearrangements demonstrate unique gene expression profiles driven by MLL-fusion proteins. Here, we identify the circadian clock transcription factor SHARP1 as a novel oncogenic target in MLL-AF6 AML, which has the worst prognosis among all subtypes of MLL-rearranged AMLs. SHARP1 is expressed solely in MLL-AF6 AML, and its expression is regulated directly by MLL-AF6/DOT1L. Suppression of SHARP1 induces robust apoptosis of human MLL-AF6 AML cells. Genetic deletion in mice delays the development of leukemia and attenuated leukemia-initiating potential, while sparing normal hematopoiesis. Mechanistically, SHARP1 binds to transcriptionally active chromatin across the genome and activates genes critical for cell survival as well as key oncogenic targets of MLL-AF6. Our findings demonstrate the unique oncogenic role for SHARP1 in MLL-AF6 AML.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Leucemia Mieloide Aguda/metabolismo , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Carcinogénesis , Transformación Celular Neoplásica , Femenino , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Masculino , Ratones , Ratones Noqueados , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Factores de Transcripción/genética
6.
Exp Hematol ; 47: 64-75, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27856324

RESUMEN

Survival rates for children and adults carrying mutations in the Mixed Lineage Leukemia (MLL) gene continue to have a very poor prognosis. The most common MLL mutation in acute lymphoblastic leukemia is the t(4;11)(q21;q23) chromosome translocation that fuses MLL in-frame with the AF4 gene producing MLL-AF4 and AF4-MLL fusion proteins. Previously, we found that MLL-AF4 binds to the BCL-2 gene and directly activates it through DOT1L recruitment and increased H3K79me2/3 levels. In the study described here, we performed a detailed analysis of MLL-AF4 regulation of the entire BCL-2 family. By measuring nascent RNA production in MLL-AF4 knockdowns, we found that of all the BCL-2 family genes, MLL-AF4 directly controls the active transcription of both BCL-2 and MCL-1 and also represses BIM via binding of the polycomb group repressor 1 (PRC1) complex component CBX8. We further analyzed MLL-AF4 activation of the BCL-2 gene using Capture-C and identified a BCL-2-specific enhancer, consisting of two clusters of H3K27Ac at the 3' end of the gene. Loss of MLL-AF4 activity results in a reduction of H3K79me3 levels in the gene body and H3K27Ac levels at the 3' BCL-2 enhancer, revealing a novel regulatory link between these two histone marks and MLL-AF4-mediated activation of BCL-2.


Asunto(s)
Elementos de Facilitación Genéticos , Histonas/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Acetilación , Proteína 11 Similar a Bcl2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Perfilación de la Expresión Génica , Regulación Leucémica de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Complejo Represivo Polycomb 1/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Translocación Genética
7.
Cell Rep ; 18(2): 482-495, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28076791

RESUMEN

Understanding the underlying molecular mechanisms of defined cancers is crucial for effective personalized therapies. Translocations of the mixed-lineage leukemia (MLL) gene produce fusion proteins such as MLL-AF4 that disrupt epigenetic pathways and cause poor-prognosis leukemias. Here, we find that at a subset of gene targets, MLL-AF4 binding spreads into the gene body and is associated with the spreading of Menin binding, increased transcription, increased H3K79 methylation (H3K79me2/3), a disruption of normal H3K36me3 patterns, and unmethylated CpG regions in the gene body. Compared to other H3K79me2/3 marked genes, MLL-AF4 spreading gene expression is downregulated by inhibitors of the H3K79 methyltransferase DOT1L. This sensitivity mediates synergistic interactions with additional targeted drug treatments. Therefore, epigenetic spreading and enhanced susceptibility to epidrugs provides a potential marker for better understanding combination therapies in humans.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Leucemia/genética , Leucemia/patología , Metiltransferasas/antagonistas & inhibidores , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Sitios de Unión , Línea Celular Tumoral , Islas de CpG/genética , Metilación de ADN/genética , Regulación Leucémica de la Expresión Génica , Genoma Humano , N-Metiltransferasa de Histona-Lisina , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Lisina/metabolismo , Metiltransferasas/metabolismo , Pronóstico , Unión Proteica , Proteínas Proto-Oncogénicas/metabolismo
8.
Nat Commun ; 8(1): 424, 2017 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-28871148

RESUMEN

ß-Thalassemia is one of the most common inherited anemias, with no effective cure for most patients. The pathophysiology reflects an imbalance between α- and ß-globin chains with an excess of free α-globin chains causing ineffective erythropoiesis and hemolysis. When α-thalassemia is co-inherited with ß-thalassemia, excess free α-globin chains are reduced significantly ameliorating the clinical severity. Here we demonstrate the use of CRISPR/Cas9 genome editing of primary human hematopoietic stem/progenitor (CD34+) cells to emulate a natural mutation, which deletes the MCS-R2 α-globin enhancer and causes α-thalassemia. When edited CD34+ cells are differentiated into erythroid cells, we observe the expected reduction in α-globin expression and a correction of the pathologic globin chain imbalance in cells from patients with ß-thalassemia. Xenograft assays show that a proportion of the edited CD34+ cells are long-term repopulating hematopoietic stem cells, demonstrating the potential of this approach for translation into a therapy for ß-thalassemia.ß-thalassemia is characterised by the presence of an excess of α-globin chains, which contribute to erythrocyte pathology. Here the authors use CRISP/Cas9 to reduce α-globin expression in hematopoietic precursors, and show effectiveness in xenograft assays in mice.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Edición Génica , Células Madre Hematopoyéticas/metabolismo , Globinas alfa/genética , Talasemia beta/genética , Talasemia beta/terapia , Animales , Antígenos CD34/metabolismo , Secuencia de Bases , Sistemas CRISPR-Cas , Células Cultivadas , Femenino , Técnicas de Silenciamiento del Gen , Genoma Humano , Xenoinjertos , Humanos , Ratones , Eliminación de Secuencia/genética , Análisis de la Célula Individual
9.
Cancer Cell ; 30(5): 737-749, 2016 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-27846391

RESUMEN

The t(4;11)(q21;q23) fuses mixed-lineage leukemia (MLL) to AF4, the most common MLL-fusion partner. Here we show that MLL fused to murine Af4, highly conserved with human AF4, produces high-titer retrovirus permitting efficient transduction of human CD34+ cells, thereby generating a model of t(4;11) pro-B acute lymphoblastic leukemia (ALL) that fully recapitulates the immunophenotypic and molecular aspects of the disease. MLL-Af4 induces a B ALL distinct from MLL-AF9 through differential genomic target binding of the fusion proteins leading to specific gene expression patterns. MLL-Af4 cells can assume a myeloid state under environmental pressure but retain lymphoid-lineage potential. Such incongruity was also observed in t(4;11) patients in whom leukemia evaded CD19-directed therapy by undergoing myeloid-lineage switch. Our model provides a valuable tool to unravel the pathogenesis of MLL-AF4 leukemogenesis.


Asunto(s)
Antígenos CD34/metabolismo , Transformación Celular Neoplásica/genética , N-Metiltransferasa de Histona-Lisina/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Translocación Genética , Animales , Linaje de la Célula , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos , Humanos , Ratones , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo
10.
Cell Rep ; 13(12): 2715-27, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26711339

RESUMEN

Targeted therapies designed to exploit specific molecular pathways in aggressive cancers are an exciting area of current research. Mixed Lineage Leukemia (MLL) mutations such as the t(4;11) translocation cause aggressive leukemias that are refractory to conventional treatment. The t(4;11) translocation produces an MLL/AF4 fusion protein that activates key target genes through both epigenetic and transcriptional elongation mechanisms. In this study, we show that t(4;11) patient cells express high levels of BCL-2 and are highly sensitive to treatment with the BCL-2-specific BH3 mimetic ABT-199. We demonstrate that MLL/AF4 specifically upregulates the BCL-2 gene but not other BCL-2 family members via DOT1L-mediated H3K79me2/3. We use this information to show that a t(4;11) cell line is sensitive to a combination of ABT-199 and DOT1L inhibitors. In addition, ABT-199 synergizes with standard induction-type therapy in a xenotransplant model, advocating for the introduction of ABT-199 into therapeutic regimens for MLL-rearranged leukemias.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Proteína de la Leucemia Mieloide-Linfoide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Sulfonamidas/farmacología , Animales , Línea Celular Tumoral , Genes bcl-2 , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Metilación , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
11.
Cell Rep ; 3(1): 116-27, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23352661

RESUMEN

The Mixed Lineage Leukemia (MLL) protein is an important epigenetic regulator required for the maintenance of gene activation during development. MLL chromosomal translocations produce novel fusion proteins that cause aggressive leukemias in humans. Individual MLL fusion proteins have distinct leukemic phenotypes even when expressed in the same cell type, but how this distinction is delineated on a molecular level is poorly understood. Here, we highlight a unique molecular mechanism whereby the RUNX1 gene is directly activated by MLL-AF4 and the RUNX1 protein interacts with the product of the reciprocal AF4-MLL translocation. These results support a mechanism of transformation whereby two oncogenic fusion proteins cooperate by activating a target gene and then modulating the function of its downstream product.


Asunto(s)
Cromosomas Humanos Par 11/genética , Cromosomas Humanos Par 4/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Regulación Leucémica de la Expresión Génica , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Activación Transcripcional , Translocación Genética/genética , Secuencia de Aminoácidos , Línea Celular Tumoral , Proliferación Celular , Inmunoprecipitación de Cromatina , Sitios Genéticos/genética , Humanos , Leucemia/genética , Modelos Biológicos , Datos de Secuencia Molecular , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Pronóstico , Unión Proteica/genética , Estabilidad Proteica , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA