Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cancer ; 22(1): 89, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37248468

RESUMEN

AIM: Chemoresistance is a major cause of treatment failure in colorectal cancer (CRC) therapy. In this study, the impact of the IGF2BP family of RNA-binding proteins on CRC chemoresistance was investigated using in silico, in vitro, and in vivo approaches. METHODS: Gene expression data from a well-characterized cohort and publicly available cross-linking immunoprecipitation sequencing (CLIP-Seq) data were collected. Resistance to chemotherapeutics was assessed in patient-derived xenografts (PDXs) and patient-derived organoids (PDOs). Functional studies were performed in 2D and 3D cell culture models, including proliferation, spheroid growth, and mitochondrial respiration analyses. RESULTS: We identified IGF2BP2 as the most abundant IGF2BP in primary and metastastatic CRC, correlating with tumor stage in patient samples and tumor growth in PDXs. IGF2BP2 expression in primary tumor tissue was significantly associated with resistance to selumetinib, gefitinib, and regorafenib in PDOs and to 5-fluorouracil and oxaliplatin in PDX in vivo. IGF2BP2 knockout (KO) HCT116 cells were more susceptible to regorafenib in 2D and to oxaliplatin, selumitinib, and nintedanib in 3D cell culture. Further, a bioinformatic analysis using CLIP data suggested stabilization of target transcripts in primary and metastatic tumors. Measurement of oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) revealed a decreased basal OCR and an increase in glycolytic ATP production rate in IGF2BP2 KO. In addition, real-time reverse transcriptase polymerase chain reaction (qPCR) analysis confirmed decreased expression of genes of the respiratory chain complex I, complex IV, and the outer mitochondrial membrane in IGF2BP2 KO cells. CONCLUSIONS: IGF2BP2 correlates with CRC tumor growth in vivo and promotes chemoresistance by altering mitochondrial respiratory chain metabolism. As a druggable target, IGF2BP2 could be used in future CRC therapy to overcome CRC chemoresistance.


Asunto(s)
Neoplasias Colorrectales , Humanos , Oxaliplatino/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica
2.
Cell Physiol Biochem ; 52(4): 787-801, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30946555

RESUMEN

BACKGROUND/AIMS: Hepatocellular carcinoma (HCC) represents the second most common cause of cancer-related deaths worldwide, not least due to its high chemoresistance. The long non-coding RNA nuclear paraspeckle assembly transcript 1 (NEAT1), localised in nuclear paraspeckles, has been shown to enhance chemoresistance in several cancer types. Since data on NEAT1 in HCC chemosensitivity are completely lacking and chemoresistance is linked to poor prognosis, we aimed to study NEAT1 expression in HCC chemoresistance and its link to HCC prognosis. METHODS: NEAT1 expression was determined in either sensitive, or sorafenib, or doxorubicin resistant HepG2, PLC/PRF/5, and Huh7 cells by qPCR. Paraspeckles were detected by immunostaining of paraspeckle component 1 (PSPC1) in cell culture and in a cohort of HCC patients. PSPC1 expression was correlated with clinical data. The expression of transcript variants of NEAT1 and transcripts encoding the paraspeckle-associated proteins was analysed in the TCGA liver cancer data set. RESULTS: NEAT1 was overexpressed in all three sorafenib and doxorubicin resistant cell lines. Paraspeckles were present in all chemoresistant cells, whereas no signal was detected in the sensitive cells. Expression of NEAT1 transcripts as well as transcripts encoding PSPC1, NONO, and RBM14 was increased in tumour tissue. Expression of PSPC1, NONO, and RBM14 transcripts was significantly associated with poor survival, whereas NEAT1 expression was not. Immunohistochemical analysis revealed that nuclear and cytoplasmic PSPC1-positivity was significantly associated with shorter overall survival of HCC patients. CONCLUSION: Our data show an induction of NEAT1 in HCC chemoresistance and a high correlation of transcripts encoding paraspeckle-associated proteins with poor survival in HCC. Therefore, NEAT1, PSPC1, NONO, and RBM14 might be promising targets for novel HCC therapies, and the paraspeckle-associated proteins might be clinical markers and predictors for poor survival in HCC.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Hepatocelular/patología , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Hepáticas/patología , Proteínas Nucleares/metabolismo , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Antineoplásicos/uso terapéutico , Área Bajo la Curva , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/mortalidad , Línea Celular Tumoral , Proteínas de Unión al ADN , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Estimación de Kaplan-Meier , Hígado/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/mortalidad , Masculino , Persona de Mediana Edad , Proteínas Asociadas a Matriz Nuclear/genética , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteínas Nucleares/genética , Factores de Transcripción de Octámeros/genética , Factores de Transcripción de Octámeros/metabolismo , Pronóstico , Modelos de Riesgos Proporcionales , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/genética , Curva ROC , Sorafenib/farmacología , Sorafenib/uso terapéutico
3.
Int J Mol Sci ; 20(13)2019 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-31261900

RESUMEN

The insulin-like growth factor 2 (IGF2) mRNA binding protein IMP2 (IGF2BP2) is an oncogenic protein known to be overexpressed in different tumor types. Pancreatic cancer is a very lethal cancer that requires early diagnosis and new treatment options. The aim of our study was to investigate the role of IMP2 in the initiation and progression of pancreatic ductal adenocarcinoma (PDAC). IMP2 was significantly overexpressed in a human precursor (PanIN) lesions suggesting IMP2 as a marker for early stages of PDAC. In a PDAC cohort of matched normal and tumor samples IMP2 showed overexpression in tumor tissues compared with normal pancreatic tissue. Strict correlation analysis (threshold R2 > 0.75) revealed 22 genes highly positively and 9 genes highly negatively correlating with IMP2. Besides genes involved in the inhibition of apoptosis (Bcl-XL), especially factors involved in ubiquitination were strongly correlated with IMP2 expression: SMURF1 and FBXO45. Moreover, protein kinase C (PKC) signaling pathway was distinctly affected: DXS1179E encoding PKC iota, PKC substrate PLEK2, and inositol triphosphate receptor IP3R3 were positively correlated with IMP2 expression. Besides tumor initiation, IMP2 also seemed to have an impact on tumor progression. TGF-ß treatment of Panc-1 pancreatic cancer cells to induce epithelial-mesenchymal transition (EMT) was accompanied by increased IMP2 expression. EMT is important for cancer cells to gain migratory and invasive potential, which is essential for metastasis. Concordantly, circulating tumor cells showed higher IMP2 levels as compared with normal tissue from tumor origin and with normal hematological cells. Accordingly, IMP2 protein levels correlated with poor survival. In conclusion, as IMP2 seems to promote tumor progression of PDAC, it might be an interesting diagnostic and prognostic marker as well as a novel target for the treatment of PDAC.


Asunto(s)
Adenocarcinoma/metabolismo , Biomarcadores de Tumor/genética , Neoplasias Pancreáticas/metabolismo , Proteínas de Unión al ARN/genética , Adenocarcinoma/genética , Adenocarcinoma/patología , Biomarcadores de Tumor/metabolismo , Transición Epitelial-Mesenquimal , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteína Quinasa C/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Regulación hacia Arriba
4.
J Hepatol ; 68(5): 996-1005, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29331340

RESUMEN

BACKGROUND & AIMS: Heat shock protein (Hsp) 72 is a molecular chaperone that has broad cytoprotective functions and is upregulated in response to stress. To determine its hepatic functions, we studied its expression in human liver disorders and its biological significance in newly generated transgenic animals. METHODS: Double transgenic mice overexpressing Hsp72 (gene Hspa1a) under the control of a tissue-specific tetracycline-inducible system (Hsp72-LAP mice) were produced. Acute liver injury was induced by a single injection of acetaminophen (APAP). Feeding with either a methionine choline-deficient (MCD; 8 weeks) or a 3,5-diethoxycarbonyl-1,4-dihydrocollidine-supplemented diet (DDC; 12 weeks) was used to induce lipotoxic injury and Mallory-Denk body (MDB) formation, respectively. Primary hepatocytes were treated with palmitic acid. RESULTS: Patients with non-alcoholic steatohepatitis and chronic hepatitis C infection displayed elevated HSP72 levels. These levels increased with the extent of hepatic inflammation and HSP72 expression was induced after treatment with either interleukin (IL)-1ß or IL-6. Hsp72-LAP mice exhibited robust, hepatocyte-specific Hsp72 overexpression. Primary hepatocytes from these animals were more resistant to isolation-induced stress and Hsp72-LAP mice displayed lower levels of hepatic injury in vivo. Mice overexpressing Hsp72 had fewer APAP protein adducts and were protected from oxidative stress and APAP-/MCD-induced cell death. Hsp72-LAP mice and/or hepatocytes displayed significantly attenuated Jnk activation. Overexpression of Hsp72 did not affect steatosis or the extent of MDB formation. CONCLUSIONS: Our results demonstrate that HSP72 induction occurs in human liver disease, thus, HSP72 represents an attractive therapeutic target owing to its broad hepatoprotective functions. LAY SUMMARY: HSP72 constitutes a stress-inducible, protective protein. Our data demonstrate that it is upregulated in patients with chronic hepatitis C and non-alcoholic steatohepatitis. Moreover, Hsp72-overexpressing mice are protected from various forms of liver stress.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Proteínas del Choque Térmico HSP72/metabolismo , Reacción de Fase Aguda/metabolismo , Reacción de Fase Aguda/patología , Animales , Muerte Celular , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Modelos Animales de Enfermedad , Femenino , Proteínas del Choque Térmico HSP72/genética , Hepatitis C Crónica/metabolismo , Hepatitis C Crónica/patología , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , Cuerpos de Mallory/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Estrés Oxidativo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Regulación hacia Arriba
5.
J Immunol ; 194(12): 6057-67, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25964494

RESUMEN

Induction of glucocorticoid-induced leucine zipper (GILZ) by glucocorticoids plays a key role in their anti-inflammatory action. In activated macrophages, GILZ levels are downregulated via tristetraprolin-mediated GILZ mRNA destabilization. To assess the functional significance of GILZ downregulation, we generated myeloid-specific GILZ knockout (KO) mice. GILZ-deficient macrophages displayed a higher responsiveness toward LPS, as indicated by increased TNF-α and IL-1ß expression. This effect was due to an activation of ERK, which was significantly amplified in GILZ KO cells. The LPS-induced activation of macrophages is attenuated upon pretreatment of macrophages with low-dose LPS, an effect termed endotoxin tolerance. In LPS-tolerant macrophages, GILZ mRNA was stabilized, whereas ERK activation was strongly decreased. In contrast, GILZ KO macrophages exhibited a strongly reduced desensitization. To explore the contribution of GILZ expression in macrophages to endotoxin tolerance in vivo, we treated GILZ KO mice with repeated i.p. injections of low-dose LPS followed by treatment with high-dose LPS. LPS pretreatment resulted in reduced proinflammatory mediator expression upon high-dose LPS treatment in serum and tissues. In contrast, cytokine induction was preserved in tolerized GILZ KO animals. In summary, our data suggest that GILZ is a key regulator of macrophage functions.


Asunto(s)
Endotoxinas/inmunología , Tolerancia Inmunológica , Macrófagos/inmunología , Macrófagos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Línea Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Expresión Génica , Humanos , Lipopolisacáridos/inmunología , Sistema de Señalización de MAP Quinasas , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Células Mieloides/inmunología , Células Mieloides/metabolismo , Factores de Transcripción/deficiencia
6.
Hepatology ; 61(2): 613-26, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25179284

RESUMEN

UNLABELLED: Growth hormone (GH) resistance has been associated with liver cirrhosis in humans but its contribution to the disease remains controversial. In order to elucidate whether GH resistance plays a causal role in the establishment and development of liver fibrosis, or rather represents a major consequence thereof, we challenged mice lacking the GH receptor gene (Ghr(-/-), a model for GH resistance) by crossing them with Mdr2 knockout mice (Mdr2(-/-)), a mouse model of inflammatory cholestasis and liver fibrosis. Ghr(-/-);Mdr2(-/-) mice showed elevated serum markers associated with liver damage and cholestasis, extensive bile duct proliferation, and increased collagen deposition relative to Mdr2(-/-) mice, thus suggesting a more severe liver fibrosis phenotype. Additionally, Ghr(-/-);Mdr2(-/-) mice had a pronounced down-regulation of hepatoprotective genes Hnf6, Egfr, and Igf-1, and significantly increased levels of reactive oxygen species (ROS) and apoptosis in hepatocytes, compared to control mice. Moreover, single knockout mice (Ghr(-/-)) fed with a diet containing 1% cholic acid displayed an increase in hepatocyte ROS production, hepatocyte apoptosis, and bile infarcts compared to their wild-type littermates, indicating that loss of Ghr renders hepatocytes more susceptible to toxic bile acid accumulation. Surprisingly, and despite their severe fibrotic phenotype, Ghr(-/-);Mdr2(-/-) mice displayed a significant decrease in tumor incidence compared to Mdr2(-/-) mice, indicating that loss of Ghr signaling may slow the progression from fibrosis/cirrhosis to cancer in the liver. CONCLUSION: GH resistance dramatically exacerbates liver fibrosis in a mouse model of inflammatory cholestasis, therefore suggesting that GH resistance plays a causal role in the disease and provides a novel target for the development of liver fibrosis treatments.


Asunto(s)
Hormona del Crecimiento/metabolismo , Cirrosis Hepática/etiología , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Animales , Ácidos y Sales Biliares/metabolismo , Colestasis/complicaciones , Hepatocitos/fisiología , Homeostasis , Cirrosis Hepática/metabolismo , Neoplasias Hepáticas Experimentales/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Somatotropina/genética , Regulación hacia Arriba , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
7.
J Lipid Res ; 55(6): 1087-97, 2014 06.
Artículo en Inglés | MEDLINE | ID: mdl-24755648

RESUMEN

Liver-specific overexpression of the insulin-like growth factor 2 (IGF2) mRNA binding protein p62/IGF2BP2-2 induces a fatty liver, which highly expresses IGF2 Because IGF2 expression is elevated in patients with steatohepatitis, the aim of our study was to elucidate the role and interconnection of p62 and IGF2 in lipid metabolism. Expression of p62 and IGF2 highly correlated in human liver disease. p62 induced an elevated ratio of C18:C16 and increased fatty acid elongase 6 (ELOVL6) protein, the enzyme catalyzing the elongation of C16 to C18 fatty acids and promoting nonalcoholic steatohepatitis in mice and humans. The p62 overexpression induced the activation of the ELOVL6 transcriptional activator sterol regulatory element binding transcription factor 1 (SREBF1). Recombinant IGF2 induced the nuclear translocation of SREBF1 and a neutralizing IGF2 antibody reduced ELOVL6 and mature SREBF1 protein levels. Concordantly, p62 and IGF2 correlated with ELOVL6 in human livers. Decreased palmitoyl-CoA levels, as found in p62 transgenic livers, can explain the lipogenic action of ELOVL6. Accordingly, p62 represents an inducer of hepatic C18 fatty acid production via a SREBF1-dependent induction of ELOVL6. These findings underline the detrimental role of p62 in liver disease.


Asunto(s)
Acetiltransferasas/metabolismo , Ácidos Grasos/biosíntesis , Hígado Graso/metabolismo , Factor II del Crecimiento Similar a la Insulina/metabolismo , Proteínas de Unión al ARN/metabolismo , Acetiltransferasas/genética , Animales , Elongasas de Ácidos Grasos , Ácidos Grasos/genética , Hígado Graso/genética , Hígado Graso/patología , Factor II del Crecimiento Similar a la Insulina/genética , Ratones , Ratones Transgénicos , Proteínas de Unión al ARN/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
9.
Int J Mol Sci ; 15(4): 5762-73, 2014 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-24714086

RESUMEN

Non-alcoholic steatohepatitis (NASH) represents a risk factor for the development of hepatocellular carcinoma (HCC) and is characterized by quantitative and qualitative changes in hepatic lipids. Since elongation of fatty acids from C16 to C18 has recently been reported to promote both hepatic lipid accumulation and inflammation we aimed to investigate whether a frequently used mouse NASH model reflects this clinically relevant feature and whether C16 to C18 elongation can be observed in HCC development. Feeding mice a methionine and choline deficient diet to model NASH not only increased total hepatic fatty acids and cholesterol, but also distinctly elevated the C18/C16 ratio, which was not changed in a model of simple steatosis (ob/ob mice). Depletion of Kupffer cells abrogated both quantitative and qualitative methionine-and-choline deficient (MCD)-induced alterations in hepatic lipids. Interestingly, mimicking inflammatory events in early hepatocarcinogenesis by diethylnitrosamine-induced carcinogenesis (48 h) increased hepatic lipids and the C18/C16 ratio. Analyses of human liver samples from patients with NASH or NASH-related HCC showed an elevated expression of the elongase ELOVL6, which is responsible for the elongation of C16 fatty acids. Taken together, our findings suggest a detrimental role of an altered fatty acid pattern in the progression of NASH-related liver disease.


Asunto(s)
Acetiltransferasas/genética , Carcinoma Hepatocelular/metabolismo , Ácidos Grasos/metabolismo , Neoplasias Hepáticas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Acetiltransferasas/biosíntesis , Animales , Carcinoma Hepatocelular/patología , Colina , Dieta , Dietilnitrosamina , Modelos Animales de Enfermedad , Elongasas de Ácidos Grasos , Humanos , Inflamación , Neoplasias Hepáticas/patología , Metionina , Ratones , Ratones Endogámicos DBA , Ratones Obesos , Enfermedad del Hígado Graso no Alcohólico/patología , ARN Mensajero/biosíntesis
10.
Front Biosci (Landmark Ed) ; 29(1): 41, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38287808

RESUMEN

BACKGROUND: The RNA-binding protein IGF2BP2/IMP2/VICKZ2/p62 is an oncofetal protein that is overexpressed in several cancer entities. Employing IMP2 knockout colorectal cancer cells, we could show the important role of IMP2 in several hallmarks of cancer. This study aimed to functionally characterize IMP2 in lung (A549, LLC1) and hepatocellular carcinoma (HepG2, Huh7) cell lines to assess its role as a potential target for these cancer entities. METHODS: IMP2 knockouts were generated by CRISPR/Cas9 and its variant approach prime editing; the editing efficiency of two single guide RNAs (sgRNAs) was verified via next-generation sequencing. We studied the effect of IMP2 knockout on cell proliferation, colony formation, and migration and employed small-molecule inhibitors of IMP2. RESULTS: Despite multiple attempts, it was not possible to generate IMP2 biallelic knockouts in A549 and Huh7 cells. Both sgRNAs showed good editing efficiency. However, edited cells lost their ability to proliferate. The attempt to generate an IMP2 biallelic knockout in LLC1 cells using CRISPR/Cas9 was successful. Monoallelic knockout cell lines of IMP2 showed a reduction in 2D cell proliferation and reduced migration. In 3D cultures, a change in morphology from compact spheroids to loose aggregates and a distinct reduction in the colony formation ability of the IMP2 knockouts was observed, an effect that was mimicked by previously identified IMP2 inhibitor compounds that also showed an inhibitory effect on colony formation. CONCLUSIONS: Our in vitro target validation supports that IMP2 is essential for tumor cell proliferation, migration, and colony formation in several cancer entities.


Asunto(s)
Antineoplásicos , Neoplasias Hepáticas , Proteínas de Unión al ARN , Humanos , Edición Génica , ARN Guía de Sistemas CRISPR-Cas , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/genética
11.
Am J Physiol Gastrointest Liver Physiol ; 304(4): G328-36, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23257922

RESUMEN

The insulin-like growth factor II (IGF2) mRNA binding protein (IMP) p62/IMP2-2, originally isolated from a hepatocellular carcinoma (HCC) patient, induces a steatotic phenotype when overexpressed in mouse livers. Still, p62 transgenic livers do not show liver cell damage but exhibit a pronounced induction of Igf2 and activation of the downstream survival kinase AKT. The aim of this study was to investigate the relation between p62 and IGF2 expression in the human system and to study potential antiapoptotic actions of p62. p62 and IGF2 mRNA levels were assessed by real-time RT-PCR. For knockdown and overexpression experiments, human hepatoma HepG2 and PLC/PRF/5 cells were transfected with siRNA or plasmid DNA. Phosphorylated AKT and ERK1/2 were analyzed by Western blot. Investigations of 32 human HCC tissues showed a strong correlation between p62 and IGF2 expression. Of note, p62 expression was increased markedly in patients with poor outcome. In hepatoma cells overexpression of p62 lowered levels of doxorubicin-induced caspase-3-like activity. Vice versa, knockdown of p62 resulted in increased doxorubicin-induced apoptosis. However, neither PI3K inhibitors nor a neutralizing IGF2 antibody showed any effects. Western blot analysis revealed increased levels of phosphorylated ERK1/2 in hepatoma cells overexpressing p62 and decreased levels in p62 knockdown experiments. When p62-overexpressing cells were treated with ERK1/2 inhibitors, the apoptosis-protecting effect of p62 was completely abrogated. Our data demonstrate that p62 exerts IGF2-independent antiapoptotic action, which is facilitated via phosphorylation of ERK1/2. Furthermore, p62 might serve as a new prognostic marker in HCC.


Asunto(s)
Proteínas de Unión al ARN/metabolismo , Animales , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Humanos , Factor II del Crecimiento Similar a la Insulina/metabolismo , Neoplasias Hepáticas/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Transgénicos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Transducción de Señal/fisiología
12.
Biology (Basel) ; 12(4)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37106731

RESUMEN

(1) Background: Aging is linked to an altered immune response and metabolism. Inflammatory conditions, such as sepsis, COVID-19, and steatohepatitis are more prevalent in the elderly and steatosis is linked both to severe COVID-19 and sepsis. We hypothesized that aging is linked to a loss of endotoxin tolerance, which normally protects the host from excessive inflammation, and that this is accompanied by elevated levels of hepatic lipids. (2) Methods: An in vivo lipopolysaccharide (LPS) tolerance model in young and old mice was used and the cytokine serum levels were measured by ELISA. Cytokine and toll-like receptor gene expression was determined by qPCR in the lungs and the liver; hepatic fatty acid composition was assessed by GC-MS. (3) Results: The old mice showed a distinct potential for endotoxin tolerance as suggested by the serum cytokine levels and gene expression in the lung tissue. Endotoxin tolerance was less pronounced in the livers of the aged mice. However, the fatty acid composition strongly differed in the liver tissues of the young and old mice with a distinct change in the ratio of C18 to C16 fatty acids. (4) Conclusions: Endotoxin tolerance is maintained in advanced age, but changes in the metabolic tissue homeostasis may lead to an altered immune response in old individuals.

13.
Commun Biol ; 6(1): 1229, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052926

RESUMEN

The IGF2BP family of RNA binding proteins consists of three paralogs that regulate intracellular RNA localization, RNA stability, and translational control. Although IGF2BP1 and 3 are oncofetal proteins, IGF2BP2 expression is maintained in many tissues, including the heart, into adulthood. IGF2BP2 is upregulated in cardiomyocytes during cardiac stress and remodeling and returns to normal levels in recovering hearts. We wondered whether IGF2BP2 might play an adaptive role during cardiac stress and recovery. Enhanced expression of an IGF2BP2 transgene in a conditional, inducible mouse line leads to dilated cardiomyopathy (DCM) and death within 3-4 weeks in newborn or adult hearts. Downregulation of the transgene after 2 weeks, however, rescues these mice, with complete recovery by 12 weeks. Hearts overexpressing IGF2BP2 downregulate sarcomeric and mitochondrial proteins and have fragmented mitochondria and elongated, thinner sarcomeres. IGF2BP2 is also upregulated in DCM or myocardial infarction patients. These results suggest that IGF2BP2 may be an attractive target for therapeutic intervention in cardiomyopathies.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Dilatada , Adulto , Animales , Humanos , Ratones , Cardiomiopatías/metabolismo , Cardiomiopatía Dilatada/genética , Miocitos Cardíacos/metabolismo , ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
14.
Epigenetics Chromatin ; 16(1): 30, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37415213

RESUMEN

Fatty liver disease or the accumulation of fat in the liver, has been reported to affect the global population. This comes with an increased risk for the development of fibrosis, cirrhosis, and hepatocellular carcinoma. Yet, little is known about the effects of a diet containing high fat and alcohol towards epigenetic aging, with respect to changes in transcriptional and epigenomic profiles. In this study, we took up a multi-omics approach and integrated gene expression, methylation signals, and chromatin signals to study the epigenomic effects of a high-fat and alcohol-containing diet on mouse hepatocytes. We identified four relevant gene network clusters that were associated with relevant pathways that promote steatosis. Using a machine learning approach, we predict specific transcription factors that might be responsible to modulate the functionally relevant clusters. Finally, we discover four additional CpG loci and validate aging-related differential CpG methylation. Differential CpG methylation linked to aging showed minimal overlap with altered methylation in steatosis.


Asunto(s)
Epigenómica , Hepatocitos , Ratones , Animales , Hepatocitos/metabolismo , Hígado/metabolismo , Etanol , Epigénesis Genética , Metilación de ADN
15.
ACS Chem Biol ; 17(2): 361-375, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35023719

RESUMEN

The RNA-binding protein IGF2BP2/IMP2/VICKZ2/p62 is overexpressed in several tumor entities, promotes tumorigenesis and tumor progression, and has been suggested to worsen the disease outcome. The aim of this study is to (I) validate IMP2 as a potential target for colorectal cancer, (II) set up a screening assay for small-molecule inhibitors of IMP2, and (III) test the biological activity of the obtained hit compounds. Analyses of colorectal and liver cancer gene expression data showed reduced survival in patients with a high IMP2 expression and in patients with a higher IMP2 expression in advanced tumors. In vitro target validation in 2D and 3D cell cultures demonstrated a reduction in cell viability, migration, and proliferation in IMP2 knockout cells. Also, xenotransplant tumor cell growth in vivo was significantly reduced in IMP2 knockouts. Different compound libraries were screened for IMP2 inhibitors using a fluorescence polarization assay, and the results were confirmed by the thermal shift assay and saturation-transfer difference NMR. Ten compounds, which belong to two classes, that is, benzamidobenzoic acid class and ureidothiophene class, were validated in vitro and showed a biological target specificity. The three most active compounds were also tested in vivo and exhibited reduced tumor xenograft growth in zebrafish embryos. In conclusion, our findings support that IMP2 represents a druggable target to reduce tumor cell proliferation.


Asunto(s)
Neoplasias , Pez Cebra , Animales , Proliferación Celular , Humanos , Neoplasias/tratamiento farmacológico , Proteínas de Unión al ARN/metabolismo , Pez Cebra/metabolismo
16.
Biochim Biophys Acta Mol Basis Dis ; 1868(6): 166398, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35318125

RESUMEN

Massive accumulation of lipids is a characteristic of alcoholic liver disease. Excess of hepatic fat activates Kupffer cells (KCs), which affect disease progression. Yet, KCs contribute to the resolution and advancement of liver injury. Aim of the present study was to evaluate the effect of KC depletion on markers of liver injury and the hepatic lipidome in liver steatosis (Lieber-DeCarli diet, LDC, female mice, mixed C57BL/6J and DBA/2J background). LDC increased the number of dead hepatocytes without changing the mRNA levels of inflammatory cytokines in the liver. Animals fed LDC accumulated elevated levels of almost all lipid classes. KC ablation normalized phosphatidylcholine and phosphatidylinositol levels in LDC livers, but had no effect in the controls. A modest decline of trigylceride and diglyceride levels upon KC loss was observed in both groups. Serum aminotransferases and hepatic ceramide were elevated in all animals upon KC depletion, and in particular, cytotoxic very long-chain ceramides increased in the LDC livers. Meta-biclustering revealed that eight lipid species occurred in more than 40% of the biclusters, and four of them were very long-chain ceramides. KC loss was further associated with excess free cholesterol levels in LDC livers. Expression of inflammatory cytokines did, however, not increase in parallel. In summary, the current study described a function of KCs in hepatic ceramide and cholesterol metabolism in an animal model of LDC liver steatosis. High abundance of cytotoxic ceramides and free cholesterol predispose the liver to disease progression suggesting a protective role of KCs in alcoholic liver diseases.


Asunto(s)
Hígado Graso , Macrófagos del Hígado , Animales , Hígado Graso/metabolismo , Femenino , Macrófagos del Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA
17.
J Hepatol ; 54(5): 994-1001, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21145819

RESUMEN

BACKGROUND & AIMS: The insulin-like growth-factor 2 (IGF2) mRNA binding protein p62 is highly expressed in hepatocellular carcinoma tissue. Still, its potential role in liver disease is largely unknown. In this study, we investigated pathophysiological implications of p62 overexpression in mice. METHODS: We generated mice overexpressing p62 under a LAP-promotor. mRNA expression levels and stability were examined by real-time RT-PCR. Allele-specific expression of Igf2 and H19 was assessed after crossing mice with SD7 animals. The Igf2 downstream mediators pAKT and PTEN were determined by Western blot. RESULTS: Hepatic p62 overexpression neither induced inflammatory processes nor liver damage. However, 2.5week old transgenic animals displayed a steatotic phenotype and improved glucose tolerance. p62 overexpression induced the expression of the imprinted genes Igf2 and H19 and their transcriptional regulator Aire (autoimmune regulator). Neither monoallelic expression nor mRNA stability of Igf2 and H19 was affected. Investigating Igf2 downstream signalling pathways showed increased AKT activation and attenuated PTEN expression. CONCLUSIONS: The induction of a steatotic phenotype implies that p62 plays a role in hepatic pathophysiology.


Asunto(s)
Factor II del Crecimiento Similar a la Insulina/genética , Hígado/patología , Factores de Transcripción/genética , Animales , Hígado Graso/genética , Hígado Graso/metabolismo , Hígado Graso/patología , Expresión Génica/fisiología , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/patología , Humanos , Hígado/fisiología , Ratones , Ratones Transgénicos , Enfermedad del Hígado Graso no Alcohólico , Fenotipo , Regiones Promotoras Genéticas/fisiología , ARN Mensajero/metabolismo , Factor de Transcripción TFIIH , Factores de Transcripción/metabolismo
20.
Cancers (Basel) ; 12(5)2020 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-32429417

RESUMEN

Hepatocellular carcinoma (HCC), the most common primary liver cancer, is challenging to treat due to its typical late diagnosis, mostly at an advanced stage. Therefore, there is a particular need for research in diagnostic and prognostic biomarkers and therapeutic targets for HCC. The use of long noncoding (lnc) RNAs can widen the list of novel molecular targets improving cancer therapy. In hepatocarcinogenesis, the role of the lncRNA H19, which has been known for more than 30 years now, is still controversially discussed. H19 was described to work either as a tumor suppressor in vitro and in vivo, or to have oncogenic features. This review attempts to survey the conflicting study results and tries to elucidate the potential reasons for the contrary findings, i.e., different methods, models, or readout parameters. This review encompasses in vitro and in vivo models as well as studies on human patient samples. Although the function of H19 in HCC remains elusive, a short outlook summarizes some ideas of using the H19 locus as a novel target for liver cancer therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA