Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 352: 119960, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38198838

RESUMEN

Nutrient recovery from wastewater treatment plants (WWTPs) for hydroponic cultivation holds promise for closing the nutrient loop and meeting rising food demands. However, most studies focus on solid products for soil-based agriculture, thus raising questions about their suitability for hydroponics. In this study, we address these questions by performing the first in-depth assessment of the extent to which state-of-the-art nutrient recovery processes can generate useful products for hydroponic application. Our results indicate that less than 11.5% of the required nutrients for crops grown hydroponically can currently be recovered. Potassium nitrate (KNO3), calcium nitrate (Ca(NO3)2), and magnesium sulfate (MgSO4), constituting over 75% of the total nutrient demand for hydroponics, cannot be recovered in appropriate form due to their high solubility, hindering their separated recovery from wastewater. To overcome this challenge, we outline a novel nutrient recovery approach that emphasizes the generation of multi-nutrient concentrates specifically designed to meet the requirements of hydroponic cultivation. Based on a theoretical assessment of nutrient and contaminant flows in a typical municipal WWTP, utilizing a steady-state model, we estimated that this novel approach could potentially supply up to 56% of the nutrient requirements of hydroponic systems. Finally, we outline fundamental design requirements for nutrient recovery systems based on this new approach. Achieving these nutrient recovery potentials could be technically feasible through a combination of activated sludge processes for nitrification, membrane-based desalination processes, and selective removal of interfering NaCl. However, given the limited investigation into such treatment trains, further research is essential to explore viable system designs for effective nutrient recovery for hydroponics.


Asunto(s)
Aguas Residuales , Purificación del Agua , Hidroponía , Fertilizantes , Nutrientes , Purificación del Agua/métodos
2.
Hortic Res ; 10(5): uhad074, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37249949

RESUMEN

As a crop quality sensor, Raman spectroscopy has been consistently proposed as one of the most promising and non-destructive methods for qualitative and quantitative analysis of plant substances, because it can measure molecular structures in a short time without requiring pretreatment along with simple usage. The sensitivity of the Raman spectrum to target chemicals depends largely on the wavelength, intensity of the laser power, and exposure time. Especially for plant samples, it is very likely that the peak of the target material is covered by strong fluorescence effects. Therefore, methods using lasers with low energy causing less fluorescence, such as 785 nm or near-infrared, are vigorously discussed. Furthermore, advanced techniques for obtaining more sensitive and clear spectra, like surface-enhanced Raman spectroscopy, time-gated Raman spectroscopy or combination with thin-layer chromatography, are being investigated. Numerous interpretations of plant quality can be represented not only by the measurement conditions but also by the spectral analysis methods. Up to date, there have been attempted to optimize and generalize analysis methods. This review summarizes the state of the art of micro-Raman spectroscopy in crop quality assessment focusing on secondary metabolites, from in vitro to in vivo and even in situ, and suggests future research to achieve universal application.

3.
Int J Food Sci ; 2022: 6357893, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438169

RESUMEN

To meet the requirements of a sustainable agricultural economy such as quality, resource conservation, and efficiency, the interaction between the cultivation parameters of plants and the resulting plant ingredients are becoming more and more interesting, especially regarding secondary metabolites. Therefore, the cultivation of lovage under the influence of light-emitting diode illumination and controlled environment conditions was studied and data on the rutin concentrations obtained are presented. Different extraction agents and processes were tested for the treatment of the leaves and the rutin was analyzed using high performance liquid chromatography (HPLC) and ultraviolet-visible spectroscopy (UV-Vis spectroscopy). UV-Vis spectroscopy was found to provide a simple and rapid method of predicting the rutin concentration. The significant parameter regarding the rutin concentration obtained was light intensity and overall rutin concentrations in the range of 17,005 mg to 34,759 mg of rutin per kg dry leaves were found.

4.
Front Plant Sci ; 11: 497, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32391040

RESUMEN

In contrast to the primary metabolism, responsible for essential synthesis mechanisms and mass balance in plants, the secondary metabolism is not of particular importance for each cell but for the plant organism as its whole. Most of these metabolites show antioxidant properties and are beneficial for human health. In order to affect accumulation of those metabolites, light is an essential factor. It is possible to select various combinations of light intensity and light quality to address corresponding photoreceptors and synthesis. However, the plethora of additional variables considering environmental conditions such as temperature, relative humidity or cultivation method complicate defining specific "light recipes". This review summarizes experiments dealing with consumable leafy greens such as lettuce or basil and the enhancement of three selected metabolites - anthocyanins, carotenoids and flavonols.

5.
J Hazard Mater ; 211-212: 275-80, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22154870

RESUMEN

Nanofiltration is frequently associated with nanotechnology - obviously because of its name. However, the term "nano" in nanofiltration refers - according to the definition of the International Union of Pure and Applied Chemistry (IUPAC) - to the size of the particles rejected and not to a nanostructure as defined by the International Organisation of Standardisation (ISO) in the membrane. Evidently, the approach to standardisation of materials differs significantly between membrane technology and nanotechnology which leads to considerable confusion and inconsistent use of the terminology. There are membranes that can be unambiguously attributed to both membrane technology and nanotechnology such as those that are functionalized with nanoparticles, while the classification of hitherto considered to be conventional membranes as nanostructured material is questionable. A driving force behind the efforts to define nanomaterials is not least the urgent need for the regulation of the use of nanomaterials. Since risk estimation is the basis for nanotechnology legislation, the risk associated with nanomaterials should also be reflected in the underlying standards and definitions. This paper discusses the impacts of the recent attempts to define nanomaterials on membrane terminology in the light of risk estimations and the need for regulation.


Asunto(s)
Filtración/instrumentación , Membranas Artificiales , Nanotecnología , Filtración/métodos , Nanoestructuras , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA