Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Brief Bioinform ; 25(1)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-38243693

RESUMEN

Fragments derived from small RNAs such as small nucleolar RNAs are biologically relevant but remain poorly understood. To address this gap, we developed sRNAfrag, a modular and interoperable tool designed to standardize the quantification and analysis of small RNA fragmentation across various biotypes. The tool outputs a set of tables forming a relational database, allowing for an in-depth exploration of biologically complex events such as multi-mapping and RNA fragment stability across different cell types. In a benchmark test, sRNAfrag was able to identify established loci of mature microRNAs solely based on sequencing data. Furthermore, the 5' seed sequence could be rediscovered by utilizing a visualization approach primarily applied in multi-sequence-alignments. Utilizing the relational database outputs, we detected 1411 snoRNA fragment conservation events between two out of four eukaryotic species, providing an opportunity to explore motifs through evolutionary time and conserved fragmentation patterns. Additionally, the tool's interoperability with other bioinformatics tools like ViennaRNA amplifies its utility for customized analyses. We also introduce a novel loci-level variance-score which provides insights into the noise around peaks and demonstrates biological relevance by distinctly separating breast cancer and neuroblastoma cell lines after dimension reduction when applied to small nucleolar RNAs. Overall, sRNAfrag serves as a versatile foundation for advancing our understanding of small RNA fragments and offers a functional foundation to further small RNA research. Availability: https://github.com/kenminsoo/sRNAfrag.


Asunto(s)
MicroARNs , MicroARNs/genética , Análisis de Secuencia de ARN/métodos , ARN Nucleolar Pequeño/genética , Biología Computacional/métodos , Alineación de Secuencia
2.
J Biol Chem ; 298(3): 101634, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35085550

RESUMEN

While miRs have been extensively studied in the context of malignancy and tumor progression, their functions in regulating T-cell activation are less clear. In initial studies, we found reduced levels of miR-15a/16 at 3 to 18 h post-T-cell receptor (TCR) stimulation, suggesting a role for decreased levels of this miR pair in shaping T-cell activation. To further explore this, we developed an inducible miR15a/16 transgenic mouse model to determine how elevating miR-15a/16 levels during early stages of activation would affect T-cell proliferation and to identify TCR signaling pathways regulated by this miR pair. Doxycycline (DOX)-induced expression of miR-15a/16 from 0 to 18 h post-TCR stimulation decreased ex vivo T-cell proliferation as well as in vivo antigen-specific T-cell proliferation. We also combined bioinformatics and proteomics approaches to identify the mitogen-activated protein kinase kinase 1 (MEK1) (Map2k1) as a target of miR-15a/16. MEK1 targeting by miR-15a/16 was confirmed using miR mimics that decreased Map2k1 mRNA containing the 3'-UTR target nucleotide sequence (UGCUGCUA) but did not decrease Map2k1 containing a mutated control sequence (AAAAAAAA). Phosphorylation of downstream signaling molecules, extracellular signal-regulated protein kinase 1/2 (ERK1/2) and Elk1, was also decreased by DOX-induced miR-15a/16 expression. In addition to MEK1, ERK1 was subsequently found to be targeted by miR-15a/16, with DOX-induced miR-15a/16 reducing total ERK1 levels in T cells. These findings show that TCR stimulation reduces miR-15a/16 levels at early stages of T-cell activation to facilitate increased MEK1 and ERK1, which promotes the sustained MEK1-ERK1/2-Elk1 signaling required for optimal proliferation.


Asunto(s)
Sistema de Señalización de MAP Quinasas , MicroARNs , Linfocitos T , Regiones no Traducidas 3' , Animales , Activación de Linfocitos , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 1/inmunología , MAP Quinasa Quinasa 1/metabolismo , Sistema de Señalización de MAP Quinasas/inmunología , Ratones , MicroARNs/genética , MicroARNs/inmunología , MicroARNs/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Proteína Elk-1 con Dominio ets/inmunología , Proteína Elk-1 con Dominio ets/metabolismo
3.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37108716

RESUMEN

High-risk benign breast tumors are known to develop breast cancer at high rates. However, it is still controversial whether they should be removed during diagnosis or followed up until cancer development becomes evident. Therefore, this study sought to identify circulating microRNAs (miRNAs) that could serve as detection markers of cancers arising from high-risk benign tumors. Small RNA-seq was performed using plasma samples collected from patients with early-stage breast cancer (CA) and high-risk (HB), moderate-risk (MB), and no-risk (Be) benign breast tumors. Proteomic profiling of CA and HB plasma was performed to investigate the underlying functions of the identified miRNAs. Our findings revealed that four miRNAs, hsa-mir-128-3p, hsa-mir-421, hsa-mir-130b-5p, and hsa-mir-28-5p, were differentially expressed in CA vs. HB and had diagnostic power to discriminate CA from HB with AUC scores greater than 0.7. Enriched pathways based on the target genes of these miRNAs indicated their association with IGF-1. Furthermore, the Ingenuity Pathway Analysis performed on the proteomic data revealed that the IGF-1 signaling pathway was significantly enriched in CA vs. HB. In conclusion, these findings suggest that these miRNAs could potentially serve as biomarkers for detecting early-stage breast cancer from high-risk benign tumors by monitoring IGF signaling-induced malignant transformation.


Asunto(s)
Neoplasias de la Mama , MicroARN Circulante , MicroARNs , Humanos , Femenino , MicroARN Circulante/genética , Factor I del Crecimiento Similar a la Insulina/genética , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proteómica , Perfilación de la Expresión Génica , MicroARNs/metabolismo , Biomarcadores
4.
Int J Mol Sci ; 25(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38203541

RESUMEN

The study of liquid biopsy with plasma samples is being conducted to identify biomarkers for clinical use. Exosomes, containing nucleic acids and metabolites, have emerged as possible sources for biomarkers. To evaluate the effectiveness of exosomes over plasma, we analyzed the small non-coding RNAs (sncRNAs) and metabolites extracted from exosomes in comparison to those directly extracted from whole plasma under both fasting and non-fasting conditions. We found that sncRNA profiles were not affected by fasting in either exosome or plasma samples. Our results showed that exosomal sncRNAs were found to have more consistent profiles. The plasma miRNA profiles contained high concentrations of cell-derived miRNAs that were likely due to hemolysis. We determined that certain metabolites in whole plasma exhibited noteworthy concentration shifts in relation to fasting status, while others did not. Here, we propose that (1) fasting is not required for a liquid biopsy study that involves both sncRNA and metabolomic profiling, as long as metabolites that are not influenced by fasting status are selected, and (2) the utilization of exosomal RNAs promotes robust and consistent findings in plasma samples, mitigating the impact of batch effects derived from hemolysis. These findings advance the optimization of liquid biopsy methodologies for clinical applications.


Asunto(s)
Exosomas , MicroARNs , ARN Pequeño no Traducido , Humanos , Hemólisis , Ayuno , Biomarcadores , Biopsia Líquida , MicroARNs/genética
5.
BMC Genomics ; 23(1): 494, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35799127

RESUMEN

BACKGROUND: Maternal recognition is the crucial step for establishing pregnancy in cattle. This study aims to identify endometrial genes and biological pathways involved in the maternal recognition of pregnancy. Caruncular endometrial tissues were collected from Day 15-17 of gestation (pregnant), non-pregnant (absence of conceptus), and cyclic (non-bred) heifers. RESULTS: Total RNAs were isolated from the caruncular endometrial tissues of pregnant, non-pregnant, and cyclic heifers, and were subjected to high-throughput RNA-sequencing. The genes with at least two-fold change and Benjamini and Hochberg p-value ≤ 0.05 were considered differentially expressed genes and further confirmed with quantitative real-time PCR. A total of 107 genes (pregnant vs cyclic) and 98 genes (pregnant vs non-pregnant) were differentially expressed in the pregnant endometrium. The most highly up-regulated genes in the pregnant endometrium were MRS2, CST6, FOS, VLDLR, ISG15, IFI6, MX2, C15H11ORF34, EIF3M, PRSS22, MS4A8, and TINAGL1. Interferon signaling, immune response, nutrient transporter, synthesis, and secretion of proteins are crucial pathways during the maternal recognition of pregnancy. CONCLUSIONS: The study demonstrated that the presence of conceptus at Day 15-17 of gestation affects the endometrial gene expression related to endometrial remodeling, immune response, nutrients and ion transporters, and relevant signaling pathways in the caruncular region of bovine endometrium during the maternal recognition of pregnancy.


Asunto(s)
Endometrio , ARN , Animales , Bovinos , Embrión de Mamíferos/metabolismo , Endometrio/metabolismo , Femenino , Análisis de Secuencia por Matrices de Oligonucleótidos , Embarazo , ARN/metabolismo , ARN Mensajero/genética
6.
BMC Genomics ; 22(1): 318, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33932994

RESUMEN

BACKGROUND: The mechanism of egg formation in the oviduct of laying hens is tightly controlled; each segment of the oviduct contributes a unique component of the egg. Several genes/proteins are involved in the synthesis of a completely healthy egg. This implies a time- and tissue-specific expression of genes and proteins in the different oviductal segments. We used hens at different physiological stages and time points to understand the transcriptional regulation of egg-white (albumen) synthesis and secretion onto the eggs in the magnum of laying hens. This study used Next-Generation Sequencing and quantitative real-time PCR (qPCR) to detect the novel genes and the cognate biological pathways that regulate the major events during the albumen formation. RESULTS: Magnum tissues collected from laying (n = 5 each at 3 h post-ovulation, p.o. and 15-20 h p.o.), non-laying (n = 4), and molting (n = 5) hens were used for differential gene expression analyses. A total of 540 genes (152 upregulated and 388 down-regulated) were differentially expressed at 3 h p.o. in the magnum of laying hens. Kyoto Encyclopedia of Genes and Genomes pathways analysis of the 152 upregulated genes revealed that glycine, serine, and threonine metabolism was the most-enriched biological pathway. Furthermore, the top two most enriched keywords for the upregulated genes were amino-acid biosynthesis and proteases. Nine candidate genes associated with albumen formation were validated with qPCR to have differential expression in laying, non-laying, and molting hens. Proteases such as TMPRSS9, CAPN2, MMP1, and MMP9 (protein maturation, ECM degradation, and angiogenesis); enzymes such as PSPH, PHGDH, and PSAT1 (amino-acid biosynthesis); RLN3, ACE, and REN (albumen synthesis, secretion and egg transport); and AVD, AvBD11, and GPX3 (antimicrobial and antioxidants) were recognized as essential molecules linked to albumen deposition in the magnum. CONCLUSIONS: This study revealed some novel genes that participate in the signaling pathways for egg-white synthesis and secretion along with some well-known functional genes. These findings help to understand the mechanisms involved in albumen biosynthesis.


Asunto(s)
Pollos , Relaxina , Animales , Pollos/genética , Huevos , Femenino , Humanos , Oviductos , Oviposición , Análisis de Secuencia de ARN
7.
BMC Pregnancy Childbirth ; 21(1): 558, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34399704

RESUMEN

BACKGROUND: Consumption of a diet with high adherence to a Mediterranean diet pattern (MDP) has been associated with a favorable gastrointestinal tract (GIT) microbiome. A healthy GIT microbiome in pregnancy, as defined by increased alpha diversity, is associated with lower chance of adverse perinatal outcomes. This study aimed to evaluate the impact of adherence to an MDP on GIT microbial diversity longitudinally throughout pregnancy. METHODS: Adherence to MDP was scored by the Alternate Mediterranean (aMED) Diet Quality Score, after being applied to a validated Food Frequency Questionnaire. Association of aMED Scores with GIT alpha diversity profiles were compared linearly and across time using a linear mixed model, including covariates of age, body mass index (BMI), ethnicity, and parity. RESULTS: Forty-one participants of Filipino, Japanese, Native Hawaiian, and Non-Hispanic White descent provided dietary information and microbiome samples during each trimester of pregnancy. Alpha diversity profiles changed over gestation, with decreased microbial diversity in the third trimester. aMED scores positively correlated with Chao1 Index and Observed Species Number (r = 0.244, p = 0.017, and r = 0.233, p = 0.023, respectively). The strongest association was detected in the third trimester (Chao 1: r = 0.43, p = 0.020, Observed Species Number: r = 0.41, p = 0.026). Participants with higher aMED scores had higher relative abundance of Acidaminoacaeae at the family level (p = 0.0169), as well as higher abundance of several species known to increase production of short chain fatty acids within the GIT. CONCLUSIONS: Adherence to MDP pattern is associated with increased maternal GIT microbial diversity, and promotes the abundance of bacteria that produce short chain fatty acids. Increased consumption of fruits, vegetables and legumes with low red meat consumption were key components driving this association. The effect of nutrition however, was less of an effect than pregnancy itself. Further studies are needed to determine if adherence to a Mediterranean diet translates not only into microbial health, but also into reduced risk of adverse pregnancy outcomes.


Asunto(s)
Dieta Mediterránea , Microbioma Gastrointestinal/fisiología , Adolescente , Adulto , Asiático , Femenino , Hawaii/epidemiología , Humanos , Japón/etnología , Persona de Mediana Edad , Filipinas/etnología , Embarazo , Complicaciones del Embarazo/epidemiología , Trimestres del Embarazo , Población Blanca , Adulto Joven
8.
Int J Mol Sci ; 22(2)2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33435397

RESUMEN

Selenoproteins are a class of proteins with the selenium-containing amino acid selenocysteine (Sec) in their primary structure. Sec is incorporated into selenoproteins via recoding of the stop codon UGA, with specific cis and trans factors required during translation to avoid UGA recognition as a stop codon, including a Sec-specific tRNA, tRNA[Ser]Sec, encoded in mice by the gene Trsp. Whole-body deletion of Trsp in mouse is embryonically lethal, while targeted deletion of Trsp in mice has been used to understand the role of selenoproteins in the health and physiology of various tissues. We developed a mouse model with the targeted deletion of Trsp in brown adipocytes (Trspf/f-Ucp1-Cre+/-), a cell type predominant in brown adipose tissue (BAT) controlling energy expenditure via activation of adaptive thermogenesis, mostly using uncoupling protein 1 (Ucp1). At room temperature, Trspf/f-Ucp1-Cre+/- mice maintain oxygen consumption and Ucp1 expression, with male Trspf/f-Ucp1-Cre+/- mice accumulating more triglycerides in BAT than both female Trspf/f-Ucp1-Cre+/- mice or Trspf/f controls. Acute cold exposure neither reduced core body temperature nor changed the expression of selenoprotein iodothyronine deiodinase type II (Dio2), a marker of adaptive thermogenesis, in Trspf/f-Ucp1-Cre+/- mice. Microarray analysis of BAT from Trspf/f-Ucp1-Cre+/- mice revealed glutathione S-transferase alpha 3 (Gsta3) and ELMO domain containing 2 (Elmod2) as the transcripts most affected by the loss of Trsp. Male Trspf/f-Ucp1-Cre+/- mice showed mild hypothyroidism while downregulating thyroid hormone-responsive genes Thrsp and Tshr in their BATs. In summary, modest changes in the BAT of Trspf/f-Ucp1-Cre +/- mice implicate a mild thyroid hormone dysfunction in brown adipocytes.


Asunto(s)
Adipocitos Marrones/metabolismo , Selenoproteínas/metabolismo , Termogénesis , Tejido Adiposo Pardo/metabolismo , Animales , Vías Biosintéticas , Células Cultivadas , Respuesta al Choque por Frío , Metabolismo Energético , Femenino , Eliminación de Gen , Masculino , Ratones , Ratones Endogámicos C57BL , ARN de Transferencia Aminoácido-Específico/genética , Proteína Desacopladora 1/genética
9.
Molecules ; 26(18)2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34577130

RESUMEN

One in five cancers is attributed to infectious agents, and the extent of the impact on the initiation, progression, and disease outcomes may be underestimated. Infection-associated cancers are commonly attributed to viral, and to a lesser extent, parasitic and bacterial etiologies. There is growing evidence that microbial community variation rather than a single agent can influence cancer development, progression, response to therapy, and outcome. We evaluated microbial sequences from a subset of infection-associated cancers-namely, head and neck squamous cell carcinoma (HNSC), liver hepatocellular carcinoma (LIHC), and stomach adenocarcinoma (STAD) from The Cancer Genome Atlas (TCGA). A total of 470 paired tumor and adjacent normal samples were analyzed. In STAD, concurrent presence of EBV and Selemonas sputigena with a high diversity index were associated with poorer survival (HR: 2.23, 95% CI 1.26-3.94, p = 0.006 and HR: 2.31, 95% CI 1.1-4.9, p = 0.03, respectively). In LIHC, lower microbial diversity was associated with poorer overall survival (HR: 2.57, 95% CI: 1.2, 5.5, p = 0.14). Bacterial within-sample diversity correlates with overall survival in infection-associated cancers in a subset of TCGA cohorts.


Asunto(s)
Neoplasias Hepáticas , Carcinoma de Células Escamosas de Cabeza y Cuello , Neoplasias Gástricas , Biomarcadores de Tumor , Regulación Neoplásica de la Expresión Génica , Humanos , Pronóstico
10.
BMC Bioinformatics ; 21(Suppl 9): 523, 2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33272199

RESUMEN

Cancer is one of the leading causes of morbidity and mortality in the globe. Microbiological infections account for up to 20% of the total global cancer burden. The human microbiota within each organ system is distinct, and their compositional variation and interactions with the human host have been known to attribute detrimental and beneficial effects on tumor progression. With the advent of next generation sequencing (NGS) technologies, data generated from NGS is being used for pathogen detection in cancer. Numerous bioinformatics computational frameworks have been developed to study viral information from host-sequencing data and can be adapted to bacterial studies. This review highlights existing popular computational frameworks that utilize NGS data as input to decipher microbial composition, which output can predict functional compositional differences with clinically relevant applicability in the development of treatment and prevention strategies.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Microbiota/genética , Neoplasias/microbiología , Especificidad de Órganos/genética , Biología Computacional , Humanos
11.
Physiol Genomics ; 52(8): 358-368, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32716698

RESUMEN

MicroRNAs (miRNAs) are powerful regulators of protein expression. Many play important roles in cardiac development and disease. While several miRNAs and targets have been well characterized, the abundance of miRNAs and the numerous potential targets for each suggest that the vast majority of these interactions have yet to be described. The goal of this study was to characterize miRNA expression in the mouse heart after coronary artery ligation (LIG) and identify novel mRNA targets altered during the initial response to ischemic stress. We performed small RNA sequencing (RNA-Seq) of ischemic heart tissue 1 day and 3 days after ligation and identified 182 differentially expressed miRNAs. We then selected relevant mRNA targets from all potential targets by correlating miRNA and mRNA expression from a corresponding RNA-Seq data set. From this analysis we chose to focus, as proof of principle, on two miRNAs from the miR-125 family, miR-125a and miR-351, and two of their potential mRNA targets, Xin actin-binding repeat-containing protein 1 (XIRP1) and factor inhibiting hypoxia-inducible factor (FIH). We found miR-125a to be less abundant and XIRP1 more abundant after ligation. In contrast, the related murine miRNA miR-351 was substantially upregulated in response to ischemic injury, and FIH expression correspondingly decreased. Luciferase reporter assays confirmed direct interactions between these miRNAs and targets. In summary, we utilized a correlative analysis strategy combining miRNA and mRNA expression data to identify functional miRNA-mRNA relationships in the heart after ligation. These findings provide insight into the response to ischemic injury and suggest future therapeutic targets.


Asunto(s)
Proteínas del Citoesqueleto/genética , Proteínas de Unión al ADN/genética , MicroARNs/genética , Oxigenasas de Función Mixta/genética , Infarto del Miocardio/genética , Regulación hacia Arriba/genética , Animales , Proteínas del Citoesqueleto/metabolismo , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Oxigenasas de Función Mixta/metabolismo , Infarto del Miocardio/metabolismo , Unión Proteica , ARN Mensajero/genética , RNA-Seq , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/genética
12.
Anal Chem ; 91(10): 6746-6753, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31002238

RESUMEN

Recent studies have indicated that circulating noncoding RNAs (ncRNAs) such as miRNAs are stable biomarkers for the diagnosis and prognosis of human diseases. However, due to low concentrations of circulating ncRNAs in blood, data normalization in plasma/serum ncRNA experiments using next-generation sequencing and quantitative real time RT-qPCR is a challenge. We found that the current normalization methods based on synthetic external spiked-in controls or published endogenous miRNA controls are inappropriate as they are not stably expressed and therefore fail to reliably detect differentially expressed ncRNAs. Using the alternative of individual ncRNAs as biomarkers, we considered a ratio-based normalization method calculated taking the ratio of any two ncRNAs in the same sample and used the resulting ratios as biomarkers. We mathematically verified the method to be independent of spiked-in and internal controls, and more robust than existing reference control based normalization methods to identify differentially expressed ncRNAs as potential biomarkers for human diseases. Thus, the ratio-based method can solve the difficult normalization problem for circuiting ncRNA data to identify reliable biomarkers to meet real clinical practice.


Asunto(s)
Biomarcadores de Tumor/sangre , MicroARN Circulante/sangre , Reacción en Cadena en Tiempo Real de la Polimerasa/estadística & datos numéricos , Análisis de Secuencia de ARN/estadística & datos numéricos , Anciano , Animales , Caenorhabditis elegans , Femenino , Humanos , Neoplasias Pulmonares/diagnóstico , Masculino , Persona de Mediana Edad
13.
BMC Plant Biol ; 19(1): 72, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30760212

RESUMEN

BACKGROUND: Drought is an important constraint on grapevine sustainability. Vitis riparia, widely used in rootstock and scion breeding, has been studied in isolated leaf drying response studies; however, it is essential to identify key root and shoot water deficit signaling traits in intact plants. This information will aid improved scion and rootstock selection and management practices in grapevine. RNAseq data were generated from V. riparia roots and shoots under water deficit and well-watered conditions to determine root signaling and shoot responses to water deficit. RESULTS: Shoot elongation, photosynthetic rate, and stomatal conductance were significantly reduced in water deficit (WD) treated than in well-watered grapevines. RNAseq analysis indicated greater transcriptional differences in shoots than in roots under WD, with 6925 and 1395 genes differentially expressed, respectively (q-value < 0.05). There were 50 and 25 VitisNet pathways significantly enriched in WD relative to well-watered treatments in grapevine shoots and roots, respectively. The ABA biosynthesis genes beta-carotene hydroxylase, zeaxanthin epoxidase, and 9-cis-epoxycarotenoid dioxygenases were up-regulated in WD root and WD shoot. A positive enrichment of ABA biosynthesis genes and signaling pathways in WD grapevine roots indicated enhanced root signaling to the shoot. An increased frequency of differentially expressed reactive oxygen species scavenging (ROS) genes were found in the WD shoot. Analyses of hormone signaling genes indicated a strong ABA, auxin, and ethylene network and an ABA, cytokinin, and circadian rhythm network in both WD shoot and WD root. CONCLUSIONS: This work supports previous findings in detached leaf studies suggesting ABA-responsive binding factor 2 (ABF2) is a central regulator in ABA signaling in the WD shoot. Likewise, ABF2 may have a key role in V. riparia WD shoot and WD root. A role for ABF3 was indicated only in WD root. WD shoot and WD root hormone expression analysis identified strong ABA, auxin, ethylene, cytokinin, and circadian rhythm signaling networks. These results present the first ABA, cytokinin, and circadian rhythm signaling network in roots under water deficit. These networks point to organ specific regulators that should be explored to further define the communication network from soil to shoot.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal , Transcriptoma , Vitis/genética , Ácido Abscísico/metabolismo , Citocininas/metabolismo , Deshidratación , Sequías , Etilenos/metabolismo , Especificidad de Órganos , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Vitis/fisiología
14.
BMC Cancer ; 19(1): 34, 2019 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-30621620

RESUMEN

BACKGROUND: We utilized miRNAs expression and clinical data to develop a prognostic signature for patients with lung adenocarcinoma, with respect to their overall survival, to identify high-risk subjects based on their miRNA genomic profile. METHODS: MiRNA expressions based on miRNA sequencing and clinical data of lung adenocarcinoma patients (n = 479) from the Cancer Genome Atlas were randomly partitioned into non-overlapping Model (n = 320) and Test (n = 159) sets, respectively, for model estimation and validation. RESULTS: Among the ten miRNAs identified using the univariate Cox analysis, six from miR-8, miR-181, miR-326, miR-375, miR-99a, and miR-10, families showed improvement of the overall survival chance, while two miRNAs from miR-582 and miR-584 families showed a worsening of survival chances. The final prognostic signature was developed with five miRNAs-miR-375, miR-582-3p, miR-326, miR-181c-5p, and miR-99a-5p-utilizing a stepwise variable selection procedure. Using the KEGG pathway analysis, we found potential evidence supporting their significance in multiple cancer pathways, including non-small cell lung cancer. We defined two risk groups with a score calculated using the Cox regression coefficients. The five-year survival rates for the low-risk group was approximately 48.76% (95% CI = (36.15, 63.93)); however, it was as low as 7.50% (95% CI = (2.34, 24.01)) for the high-risk group. Furthermore, we demonstrated the effect of the genomic profile using the miRNA signature, quantifying survival rates for hypothetical subjects in different pathological stages of cancer. CONCLUSIONS: The proposed prognostic signature can be used as a reliable tool for identifying high-risk subjects regarding survival based on their miRNA genomic profile.


Asunto(s)
Adenocarcinoma del Pulmón/epidemiología , Adenocarcinoma del Pulmón/genética , Biomarcadores de Tumor/genética , Pronóstico , Adenocarcinoma del Pulmón/fisiopatología , Anciano , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , MicroARNs/clasificación , MicroARNs/genética , Persona de Mediana Edad , Transcriptoma
15.
J Infect Dis ; 218(9): 1453-1463, 2018 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-29868826

RESUMEN

Background: Myeloid activation contributes to cognitive impairment in chronic human immunodeficiency virus (HIV) infection. We explored whether combination antiretroviral therapy (cART) initiation during acute HIV infection impacts CD163 shedding, a myeloid activation marker, and in turn, implications on the central nervous system (CNS). Methods: We measured soluble CD163 (sCD163) levels in plasma and cerebrospinal fluid (CSF) by enzyme-linked immunosorbent assay in Thais who initiated cART during acute HIV infection (Fiebig stages I-IV). Examination of CNS involvement included neuropsychological testing and analysis of brain metabolites by magnetic resonance spectroscopy. Chronic HIV-infected or uninfected Thais served as controls. Results: We examined 51 adults with acute HIV infection (Fiebig stages I-III; male sex, >90%; age, 31 years). sCD163 levels before and after cART in Fiebig stage I/II were comparable to those in uninfected controls (plasma levels, 97.9 and 93.6 ng/mL, respectively, vs 99.5 ng/mL; CSF levels, 6.7 and 6.4 ng/mL, respectively, vs 7.1 ng/mL). In Fiebig stage III, sCD163 levels were elevated before cART as compared to those in uninfected controls (plasma levels, 135 ng/mL; CSF levels, 10 ng/mL; P < .01 for both comparisons) before normalization after cART (plasma levels, 90.1 ng/mL; CSF levels, 6.5 ng/mL). Before cART, higher sCD163 levels during Fiebig stage III correlated with poor CNS measures (eg, decreased N-acetylaspartate levels), but paradoxically, during Fiebig stage I/II, this association was linked with favorable CNS outcomes (eg, higher neuropsychological test scores). After cART initiation, higher sCD163 levels during Fiebig stage III were associated with negative CNS indices (eg, worse neuropsychological test scores). Conclusion: Initiation of cART early during acute HIV infection (ie, during Fiebig stage I/II) may decrease inflammation, preventing shedding of CD163, which in turn might lower the risk of brain injury.


Asunto(s)
Antirretrovirales/uso terapéutico , Antígenos CD/sangre , Antígenos de Diferenciación Mielomonocítica/sangre , Lesiones Encefálicas/prevención & control , Sistema Nervioso Central/metabolismo , Infecciones por VIH/sangre , Infecciones por VIH/tratamiento farmacológico , Receptores de Superficie Celular/sangre , Adulto , Biomarcadores/sangre , Lesiones Encefálicas/sangre , Femenino , Humanos , Masculino , Adulto Joven
16.
Physiol Genomics ; 50(7): 479-494, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29652636

RESUMEN

Alternative splicing of RNA is an underexplored area of transcriptional response. We expect that early changes in alternatively spliced genes may be important for responses to cardiac injury. Hypoxia inducible factor 1 (HIF1) is a key transcription factor that rapidly responds to loss of oxygen through alteration of metabolism and angiogenesis. The goal of this study was to investigate the transcriptional response after myocardial infarction (MI) and to identify novel, hypoxia-driven changes, including alternative splicing. After ligation of the left anterior descending artery in mice, we observed an abrupt loss of cardiac contractility and upregulation of hypoxic signaling. We then performed RNA sequencing on ischemic heart tissue 1 and 3 days after infarct to assess early transcriptional changes and identified 89 transcripts with altered splicing. Of particular interest was the switch in Pkm isoform expression (pyruvate kinase, muscle). The usually predominant Pkm1 isoform was less abundant in ischemic hearts, while Pkm2 and associated splicing factors (hnRNPA1, hnRNPA2B1, Ptbp1) rapidly increased. Despite increased Pkm2 expression, total pyruvate kinase activity remained reduced in ischemic myocardial tissue. We also demonstrated HIF1 binding to PKM by chromatin immunoprecipitation, indicating a direct role for HIF1 in mediating this isoform switch. Our study provides a new, detailed characterization of the early transcriptome after MI. From this analysis, we identified an HIF1-mediated alternative splicing event in the PKM gene. Pkm1 and Pkm2 play distinct roles in glycolytic metabolism and the upregulation of Pkm2 is likely to have important consequences for ATP synthesis in infarcted cardiac muscle.


Asunto(s)
Perfilación de la Expresión Génica , Factor 1 Inducible por Hipoxia/genética , Infarto del Miocardio/genética , Piruvato Quinasa/genética , Empalme Alternativo , Animales , Glucólisis/genética , Humanos , Hipoxia , Factor 1 Inducible por Hipoxia/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Piruvato Quinasa/metabolismo
17.
Malar J ; 16(1): 58, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28148260

RESUMEN

BACKGROUND: Diagnosis of Plasmodium falciparum is often based on detection of histidine-rich protein 2 (HRP2) in blood. Most HRP2-based assays have high sensitivity and specificity; however, authors have suggested that antibodies (Ab) to HRP2 could reduce assay sensitivity. This study sought to characterize the antibody response to HRP2 with respect to prevalence, class, subclass, affinity, and age distribution in Cameroonian children and adults residing in an area with high P. falciparum transmission. METHODS: Plasma samples from 181 Cameroonian children and adults who had been repeatedly exposed to P. falciparum and 112 samples from American adults who had never been exposed were tested for IgG Ab to HRP2. For comparison, Ab to the merozoite antigens MSP1, MSP2, MSP3 and the pregnancy-associated antigen VAR2CSA were measured using a multiplex bead-based assay. In addition, 81 plasma samples from slide-positive individuals were screened for IgM Ab to HRP2. RESULTS: As expected, children and adults had IgG Ab to MSP1, MSP2 and MSP3, antibody levels increased with age, and only women of child-bearing age had Ab to VAR2CSA; however, no convincing evidence was found that these individuals had an acquired antibody response to HRP2. That is, using two sources of recombinant HRP2, identical results were obtained when plasma from 110 Cameroonian adults and 112 US adults were screened for IgG Ab. Further studies showed that antibody prevalence and levels did not increase with age in Cameroonians between ages 5 and >80 years. Although a few samples from slide-positive Cameroonians had IgM values slightly above the American cut-off, it was unclear if the individuals had a true IgM response to HRP2 or if the values were due to non-specific binding from elevated immunoglobulin levels associated with infection. Data from prediction models showed a paucity of Class II T cell epitopes in HRP2. CONCLUSIONS: These data support the conclusion that most individuals in malaria-endemic areas do not produce an acquired humoral response to HRP2. The absence of Ab helps explain why HRP2-based assays are able to detect nanogram amounts of HRP2 and why HRP2 continues to circulate for a long time after parasite clearance.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/inmunología , Enfermedades Endémicas , Malaria Falciparum/inmunología , Proteínas Protozoarias/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Antígenos de Protozoos/sangre , Camerún/epidemiología , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Inmunoglobulina M/sangre , Malaria Falciparum/epidemiología , Masculino , Proteína 1 de Superficie de Merozoito/sangre , Persona de Mediana Edad , Embarazo , Proteínas Protozoarias/sangre , Estados Unidos , Adulto Joven
18.
Animals (Basel) ; 14(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38998041

RESUMEN

The gastrointestinal tract has a pivotal role in nutrient absorption, immune function, and overall homeostasis. The ileum segment of the small intestine plays respective roles in nutrient breakdown and absorption. The purpose of this study was to investigate the impact of heat-induced oxidative stress and the potential mitigating effects of an astaxanthin antioxidant treatment on the ileum of broilers. By comparing the growth performance and gene expression profiles among three groups-thermal neutral, heat stress, and heat stress with astaxanthin-thermal neutral temperature conditions of 21-22 °C and heat stress temperature of 32-35 °C, this research aims to elucidate the role of astaxanthin in supporting homeostasis and cellular protection in the ileum. Results showed both treatments under heat stress experienced reduced growth performance, while the group treated with astaxanthin showed a slightly lesser decline. Results further showed the astaxanthin treatment group significantly upregulated in the cytoprotective gene expression for HSF2, SOD2, GPX3, and TXN, as well as the upregulation of epithelial integrity genes LOX, CLDN1, and MUC2. In conclusion, our experimental findings demonstrate upregulation of cytoprotective and epithelial integrity genes, suggesting astaxanthin may effectively enhance the cellular response to heat stress to mitigate oxidative damage and contribute to cytoprotective capacity.

19.
bioRxiv ; 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37662282

RESUMEN

Fragments derived from small RNAs such as small nucleolar RNAs hold biological relevance. However, they remain poorly understood, calling for more comprehensive methods for analysis. We developed sRNAfrag, a standardized workflow and set of scripts to quantify and analyze sRNA fragmentation of any biotype. In a benchmark, it is able to detect loci of mature microRNAs fragmented from precursors and, utilizing multi-mapping events, the conserved 5' seed sequence of miRNAs which we believe may extraoplate to other small RNA fragments. The tool detected 1411 snoRNA fragment conservation events between 2/4 eukaryotic species, providing the opportunity to explore motifs and fragmentation patterns not only within species, but between. Availability: https://github.com/kenminsoo/sRNAfrag.

20.
bioRxiv ; 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37577518

RESUMEN

Background: Although our understanding of the immunopathology and subsequent risk and severity of COVID-19 disease is evolving, a detailed account of immune responses that contribute to the long-term consequences of pulmonary complication in COVID-19 infection remain unclear. Few studies have detailed the immune and cytokine profiles associated with post-acute sequalae of SARS-CoV-2 infection with persistent pulmonary symptoms (PPASC). However, the dysregulation of the immune system that drives pulmonary sequelae in COVID-19 survivors and PASC sufferers remains largely unknown. Results: To characterize the immunological features of pulmonary PASC (PPASC), we performed droplet-based single-cell RNA sequencing to study the transcriptomic profiles of peripheral blood mononuclear cells (PBMCs) from participants naïve to SARS-CoV-2 (Control) and infected with SARS-CoV-2 with chronic pulmonary symptoms (PPASC). We analyzed more than 34,139 PBMCs by integrating our dataset with previously reported control datasets (GSM4509024) cell distribution. In total, 11 distinct cell populations were identified based on the expression of canonical markers. The proportion of myeloid-lineage cells ([MLCs]; CD14 + /CD16 + monocytes and dendritic cells) was increased in PPASC compared to controls. MLCs from PPASC displayed up-regulation of genes associated with pulmonary symptoms/fibrosis, while glycolysis metabolism-related genes were downregulated. Similarly, pathway analysis showed that fibrosis- related ( VEGF , WNT , and SMAD ) and cell death pathways were up-regulated, but immune pathways were down-regulated in PPASC. In PPASC, we observed interactive VEGF ligand- receptor pairs among MLCs, and network modules in CD14 + (cluster 4) and CD16 + (Cluster 5) monocytes displayed a significant enrichment for biological pathways linked to adverse COVID- 19 outcomes, fibrosis, and angiogenesis. Further analysis revealed a distinct metabolic alteration in MLCs with a down-regulation of glycolysis/gluconeogenesis in PPASC compared to SARS- CoV-2 naïve samples. Conclusion: This study offers valuable insights into the immune response and cellular landscape in PPASC. The presence of elevated MLC levels and their corresponding gene signatures associated with fibrosis, immune response suppression, and altered metabolic states suggests their potential role as a driver of PPASC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA