Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 60(20): 15557-15568, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34569241

RESUMEN

In this work, a metal-organic framework (MOF) material of NH2-MIL88B was hybridized with TpPa-1-COF through covalent bonding, and the hybrid was subsequently employed for the degradation of Rhodamine B (RhB) and tetracycline (TC) by simulated sunlight-induced Fenton-like exciting H2O2. The obtained results show that its photocatalytic activity is much better than those of its parent MOF and covalent organic framework (COF). Moreover, it is much higher than that of bare photocatalysis without Fenton-like excitation of H2O2. The high degradation efficiency is ascribed to two factors. One is the formation of hybrid, which promotes charge separation and light absorbance. Another is the Fenton-like excitation of H2O2, which produces more hydroxyl radicals (•OH). This report presents a facile approach to greatly improve the photocatalytic property of MOF materials by the formation of hybrid with COFs and Fenton-like excitation of H2O2.

2.
Inorg Chem ; 59(10): 6942-6952, 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32379962

RESUMEN

In this work, for the first time, we fabricated a novel covalent organic framework (COF)-based 2D-2D heterojunction composite MoS2/COF by a facile hydrothermal method. The results of photocatalytic degradation of TC and RhB under simulated solar light irradiation showed that the as-prepared composite exhibited outstanding catalytic efficiency compared with pristine COFs and MoS2. The significantly enhanced catalytic efficiency can be ascribed to the formation of 2D-2D heterojunction with a well-matched band position between COF and MoS2, which can effectively restrain the recombination of charge carriers and increase the light absorption as well as the specific surface area. Moreover, the fabricated 2D-2D layered structure can effectively increase the contact area with an intimate interface contact, which greatly facilitates the charge mobility and transfer in the interfaces. This study reveals that artful integration of organic (COFs) and inorganic materials into a single hybrid with a 2D-2D interface is an effective strategy to fabricate highly efficient photocatalysts.

3.
Inorg Chem ; 59(10): 7027-7038, 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32348121

RESUMEN

In the present study, a hierarchical Co9S8@ZnAgInS heterostructural cage was developed for the first time which can photocatalytically produce hydrogen and degrade organic pollutants with high efficiency. First, the Co9S8 dodecahedron was synthesized using a metal-organic framework (MOFs) material, ZIF-67, as a precursor, then two kinds of metal sulfide semiconductors were elaborately integrated into a hierarchical hollow heterostructural cage with coupled heterogeneous shells and 2D nanosheet subunits. The artfully designed hollow heterostructural composite exhibited remarkable photocatalytic activity without using any cocatalysts, with a 9395.3 µmol g-1 h-1 H2 evolution rate and high degradation efficiency for RhB. The significantly enhanced photocatalytic activity can be attributed to the unique architecture and intimate-contact interface between Co9S8 and ZnAgInS, which promote the transfer and separation of the photogenerated charges, increase light absorption, and offer large surface area and active sites. This work presents a new strategy to design highly active semiconductor photocatalysts by using MOF materials as precursors and coupling of metal sulfide semiconductors to form hollow architecture dodecahedron cages with an intimate interface.

4.
RSC Adv ; 8(74): 42308-42321, 2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-35558408

RESUMEN

A novel heterostructured nanocomposite UCNPs@SiO2@Ag/g-C3N4 was developed for the first time to substantially boost the solar-light driven photocatalytic activity of g-C3N4. Its photocatalytic properties and photocatalytic mechanism were investigated. The as-synthesized photocatalyst with excellent improvement in the solar absorption and separation efficiency of photoinduced electron-hole pairs exhibited optimum solar-induced photocatalytic activity in dye degradation and hydrogen production. The experimental results showed that the rates of degradation of Rhodamine B (RhB) and hydrogen evolution were about 10 and 12 times higher than that of pristine g-C3N4, respectively. The excellent photocatalytic activity was attributed to the synergetic effect of upconversion nanoparticles (UCNPs) and Ag nanoparticles (NPs) on the modification of the photocatalytic properties of g-C3N4, resulting in a broad light response range for g-C3N4 as well as the fast separation and slow recombination of photoinduced electron-hole pairs. This study provides new insight into the fabrication of g-C3N4-based nanocomposite photocatalysts with high catalytic efficiency through the artful assembly of UCNPs, Ag NPs and g-C3N4 into a hetero-composite nanostructure. The prominent improvement in photocatalytic activity enables the potential application of g-C3N4 in the photocatalytic degradation of organic pollutants and hydrogen production utilizing solar energy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA