Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Chem Res Toxicol ; 34(8): 1890-1902, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34264070

RESUMEN

Citrus medica L. is rich in numerous vital bioactive constituents, though it is an underutilized among the citrus genus. Therefore, the aim of the present investigation was to evaluate the protective role of the C. medica fruit (CMF) methanol extract against carbofuran (CF)-induced toxicity in experimental rats. In addition, this work aims at detecting and measuring polyphenolic compounds by means of high-performance liquid chromatography (HPLC) and evaluation of the antioxidant activity of this extract. For this, studies dealing with serum hematological and biochemical parameters, liver endogenous antioxidants, as well as hepatic histo-architectural features have been carried out to assess the protective ability of CMF against CF-induced toxicity. Additionally, total phenol, flavonoid, and antioxidant capability were measured and the antioxidant action was investigated using DPPH and nitric oxide radical scavenging assays as well as reducing power assessments. HPLC results revealed the presence of benzoic acid, cinnamic acid, gallic acid, quercetin, and salicylic acid in CMF extract. Furthermore, results showed that CMF has considerable total phenol, flavonoid, and antioxidant capability and exhibits significant free radical scavenging and reducing potentialities. On the other hand, CF intoxication of rats significantly altered the hematological and serum biochemical parameters with hepatocytes disruption. Carbofuran also caused an upsurge in malondialdehyde (MDA) level and a decline in hepatic cellular antioxidant enzymes levels in rats compared to the control group. Co-administration of CMF amended the anomalies and improved the histo-architectural arrangement of hepatocytes in treated groups. CMF also inhibited the alteration of endogenous antioxidant enzymes and MDA levels as compared to the carbofuran treated group and returned them to their normal state. Taken all together, results from this investigation highlight the protective role of CMF against CF-induced toxicity which might be attributed to the polyphenolic constituents of the extract.


Asunto(s)
Antioxidantes/uso terapéutico , Carbofurano/toxicidad , Citrus , Insecticidas/toxicidad , Extractos Vegetales/uso terapéutico , Polifenoles/uso terapéutico , Animales , Antioxidantes/química , Antioxidantes/farmacología , Citrus/química , Femenino , Frutas/química , Hígado/efectos de los fármacos , Hígado/patología , Ratones , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polifenoles/química , Polifenoles/farmacología , Ratas , Ratas Sprague-Dawley
2.
Molecules ; 26(22)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34833913

RESUMEN

Dengue fever is a dangerous infectious endemic disease that affects over 100 nations worldwide, from Africa to the Western Pacific, and is caused by the dengue virus, which is transmitted to humans by an insect bite of Aedes aegypti. Millions of citizens have died as a result of dengue fever and dengue hemorrhagic fever across the globe. Envelope (E), serine protease (NS3), RNA-directed RNA polymerase (NS5), and non-structural protein 1 (NS1) are mostly required for cell proliferation and survival. Some of the diterpenoids and their derivatives produced by nature possess anti-dengue viral properties. The goal of the computational study was to scrutinize the effectiveness of diterpenoids and their derivatives against dengue viral proteins through in silico study. Methods: molecular docking was performed to analyze the binding affinity of compounds against four viral proteins: the envelope (E) protein, the NS1 protein, the NS3 protein, and the NS5 protein. Results: among the selected drug candidates, triptolide, stevioside, alepterolic acid, sphaeropsidin A, methyl dodovisate A, andrographolide, caesalacetal, and pyrimethamine have demonstrated moderate to good binding affinities (-8.0 to -9.4 kcal/mol) toward the selected proteins: E protein, NS3, NS5, and NS1 whereas pyrimethamine exerts -7.5, -6.3, -7.8, and -6.6 kcal/mol with viral proteins, respectively. Interestingly, the binding affinities of these lead compounds were better than those of an FDA-approved anti-viral medication (pyrimethamine), which is underused in dengue fever. Conclusion: we can conclude that diterpenoids can be considered as a possible anti-dengue medication option. However, in vivo investigation is recommended to back up the conclusions of this study.


Asunto(s)
Antivirales/farmacología , Virus del Dengue/efectos de los fármacos , Diterpenos/farmacología , Antivirales/química , Antivirales/farmacocinética , Sitios de Unión , Simulación por Computador , Dengue/tratamiento farmacológico , Dengue/virología , Diterpenos/química , Diterpenos/farmacocinética , Diseño de Fármacos , Humanos , Simulación del Acoplamiento Molecular , Fitoquímicos/química , Fitoquímicos/farmacocinética , Fitoquímicos/farmacología , Unión Proteica , ARN Helicasas/química , ARN Helicasas/efectos de los fármacos , ARN Helicasas/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/efectos de los fármacos , Serina Endopeptidasas/metabolismo , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/efectos de los fármacos , Proteínas del Envoltorio Viral/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/efectos de los fármacos , Proteínas no Estructurales Virales/metabolismo
3.
Biotechnol Appl Biochem ; 66(3): 434-444, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30801842

RESUMEN

Ponicidin, an ent-kaurane diterpenoid derived from Rabdosia rubescens, exhibits antitumor activities against several types of cancers. This review summarizes the botanical sources, biological activities, and biopharmaceutical profile of ponicidin. Additionally, a molecular docking study has been undertaken to correlate the interaction of this diterpenoid with biomacromolecules found in the literature. For this purpose, an up-to-date (till December 2018) literature survey was conducted using a number of databases such as PubMed, Science Direct, Web of Science, Scopus, the American Chemical Society, Clinicaltrials.gov, and Google Scholar. Findings suggest that ponicidin exerts antioxidant and anticancer activity in various test systems, including experimental animals and cultured cancer cells. Research findings revealed that anticancer mechanisms of ponicidin include antioxidant/oxidative stress induction, cytotoxic, apoptotic inductive, chemosensitizer, antiangiogenic, and antiproliferative effects. In silico study suggests that 5ITD (PI3K) was the best protein with which ponicidin interacts to exert its anticancer effect. In conclusion, ponicidin might be a promising plant-derived cancer chemotherapeutic agent.


Asunto(s)
Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Antioxidantes/farmacología , Diterpenos/farmacología , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/farmacología , Antineoplásicos Fitogénicos/aislamiento & purificación , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Apoptosis/efectos de los fármacos , Sitios de Unión/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Diterpenos/química , Diterpenos/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Isodon/química , Conformación Molecular , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/aislamiento & purificación , Relación Estructura-Actividad
4.
3 Biotech ; 13(4): 116, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36919029

RESUMEN

The current study is designed to evaluate the antiemetic effect of the diterpenoid phytol (PHY) using in vivo and in silico studies. For this, emesis was induced in 4-day-old chicks by the oral administration of copper sulfate (CuSO4.5H2O) at 50 mg/kg. To see the possible antiemetic mechanism of PHY, we used a number of reference drugs such as domperidone (80 mg/kg), ondansetron (24 mg/kg) and hyoscine (100 mg/kg) as positive controls, while the vehicle served as a negative control group. PHY was administered orally at the doses of 50 and 75 mg/kg. Both PHY and reference drugs were given alone or in combined groups to evaluate their synergistic or antagonistic effects on the chicks. Molecular docking of PHY and reference drugs was carried out against 5HT3, D2, D3, H1, NK1, and mAChRs (M1-M5) receptors for estimating binding affinity to the receptors. Drug-receptor interactions and active sites of the receptors were observed with the aid of different computational tools. The drug-likeness and pharmacokinetics of all the drugs were predicted through the SwissADME online database. The results suggest that PHY reduces the mean number of retches and increases latency dose-dependently in the birds. In the combination groups, PHY75 showed better antiemetic effects with domperidone and ondansetron. In addition, PHY exhibited the highest binding affinity with the D2 receptor (6CM4) (- 7.3 kcal/mol). In conclusion, PHY showed an antiemetic activity in chicks, possibly through the D2 receptor interaction pathway.

5.
J Biomol Struct Dyn ; 40(22): 12286-12301, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34459720

RESUMEN

Ebselen (SPI-1005) is an active selenoorganic compound that can be found potential inhibitory activity against different types of viral infections such as zika virus, influenza A virus, HCV, and HIV-1; and also be found to exhibit promising antiviral activity against SARS-CoV-2 in cell-based assays but its particular target action against specific non-structural and structural proteins of SARS-CoV-2 is unclear to date. The purpose of this study is to evaluate the anti-SARS-CoV-2 efficacy of Ebselen along with the determination of the specific target among the 12 most common target proteins of SARS-CoV-2. AutoDock Vina in PyRx platform was used for docking analysis against the 12 selected SARS-CoV-2 encoded drug targets. ADME profiling was examined by using SwissADME online server. The stability of binding mode in the target active sites was evaluated using molecular dynamics (MD) simulation studies through NAMD and Desmond package software application. In this docking study, we recognized that Ebselen possesses the highest affinity to N protein (C domain) (PDB ID: 6YUN) and PLpro (PDB ID: 6WUU) among the selected SARS-CoV-2 targets showing -7.4 kcal/mol binding energy. The stability of Ebselen-6YUN and Ebselen-6WUU was determined by a 100 ns trajectory of all-atom molecular dynamics simulation. Structural conformation of these two complexes displayed stable root mean square deviation (RMSD), while root mean square fluctuations (RMSF) were also found to be consistent. This molecular docking study may propose the efficiency of Ebselen against SARS-CoV-2 to a significant extent which makes it a candidature of COVID-19 treatment.


Asunto(s)
COVID-19 , Infección por el Virus Zika , Virus Zika , Humanos , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19 , Simulación del Acoplamiento Molecular , Antivirales/farmacología , Azoles/farmacología , Simulación de Dinámica Molecular , Inhibidores de Proteasas
6.
Biomed Res Int ; 2022: 5886269, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35837379

RESUMEN

Background: Breast cancer is one of the most common types of cancer diagnosed and the second leading cause of death among women. Breast cancer susceptibility proteins of type 1 and 2 are human tumor suppressor genes. Genetic variations/mutations in these two genes lead to overexpression of human breast tumor suppressor genes (e.g., BRCA1, BRCA2), which triggers uncontrolled duplication of cells in humans. In addition, multidrug resistance protein 1 (MDR1), an important cell membrane protein that pumps many foreign substances from cells, is also responsible for developing resistance to cancer chemotherapy. Aim of the Study. The aim of this study was to analyze some natural compounds or their derivatives as part of the development of strong inhibitors for breast cancer. Methodology. Molecular docking studies were performed using compounds known in the literature to be effective against BRCA1 and BRCA2 and MDR1, with positive control being 5-fluorouracil, an antineoplastic drug as a positive control. Results: The binding affinity of the compounds was analyzed, and it was observed that they had a better binding affinity for the target proteins than the standard drug 5-fluorouracil. Among the compounds analyzed, α-hederin, andrographolide, apigenin, asiatic acid, auricular acid, sinularin, curcumin, citrinin, hispolon, nerol, phytol, retinol palmitate, and sclareol showed the best binding affinity energy to the BRCA1, BRCA2, and MDR1 proteins, respectively. Conclusions: α-Hederin, andrographolide, apigenin, asiatic acid, auricular acid, hispolon, sclareol, curcumin, citrinin, and sinularin or their derivatives can be a good source of anticancer agents in breast cancer.


Asunto(s)
Neoplasias de la Mama , Citrinina , Curcumina , Apigenina , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Curcumina/farmacología , Femenino , Fluorouracilo , Genes BRCA1 , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Humanos , Simulación del Acoplamiento Molecular
7.
Life Sci ; 309: 121044, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36208657

RESUMEN

The present study attempted to scrutinize the protective effect of the methanolic extract of P. chaba stem bark against paracetamol-induced hepatotoxicity in Sprague-Dawley rats, along with the gas chromatography-mass spectrometry (GC-MS) analysis to identify phytochemicals, which were further docked in the catalytic site of CYP2E1 and the MD simulation for system that plays a major role in the bio-activation of toxic substances that produce reactive metabolites, leading to hepatotoxicity. P. chaba stem methanol extract (250 and 500 mg/kg) were treated orally with the negative control and the negative control silymarin (50 mg/kg) groups. Phytochemical profiling was conducted using GC-MS. In in-silico studies, PyRx software was used for docking analysis and the stability of the binding mode in the target active sites was evaluated through a set of standard MD-simulation protocols using the Charmm 27 force field and Swiss PARAM. Co-administration of P. chaba at both doses with APAP significantly reduced the APAP-augmented liver marker enzymes ALT, AST, ALP, and LDH, along with serum albumin, globulin, hepatic enzymes, histopathological architecture, lipid profiles, total protein, and total bilirubin, and elevated the levels of MDA. The GC-MS analysis indicated that P. chaba extract is enriched in fatty acid methyl esters (46.23 %) and alkaloids (10.91 %) and piperine is represented as a main phytochemical. Among all the identified phytochemicals, piperine (-8.0 kcal/mol) was found to be more interacting and stable with the binding site of CYP2E1. Therefore, all of our findings may conclude that the P. chaba stem extract and its main compound, piperine, are able to neutralize APAP-induced hepatic damage.


Asunto(s)
Alcaloides , Enfermedad Hepática Inducida por Sustancias y Drogas , Piper , Silimarina , Ratas , Animales , Acetaminofén/toxicidad , Ratas Sprague-Dawley , Citocromo P-450 CYP2E1 , Cromatografía de Gases y Espectrometría de Masas , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Metanol/farmacología , Corteza de la Planta , Extractos Vegetales/uso terapéutico , Hígado , Alcaloides/farmacología , Silimarina/farmacología , Bilirrubina , Lípidos/farmacología , Ácidos Grasos , Albúmina Sérica , Ésteres/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA