Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Genomics ; 17(1): 88, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789421

RESUMEN

BACKGROUND: Endometriosis is a common, chronic disease among fertile-aged women. Disease course may be highly invasive, requiring extensive surgery. The etiology of endometriosis remains elusive, though a high level of heritability is well established. Several low-penetrance predisposing loci have been identified, but high-risk susceptibility remains undetermined. Endometriosis is known to increase the risk of epithelial ovarian cancers, especially of endometrioid and clear cell types. Here, we have analyzed a Finnish family where four women have been diagnosed with surgically verified, severely symptomatic endometriosis and two of the patients also with high-grade serous carcinoma. RESULTS: Whole-exome sequencing revealed three rare candidate predisposing variants segregating with endometriosis. The variants were c.1238C>T, p.(Pro413Leu) in FGFR4, c.5065C>T, p.(Arg1689Trp) in NALCN, and c.2086G>A, p.(Val696Met) in NAV2. The only variant predicted deleterious by in silico tools was the one in FGFR4. Further screening of the variants in 92 Finnish endometriosis and in 19 endometriosis-ovarian cancer patients did not reveal additional carriers. Histopathology, positive p53 immunostaining, and genetic analysis supported the high-grade serous subtype of the two tumors in the family. CONCLUSIONS: Here, we provide FGFR4, NALCN, and NAV2 as novel high-risk candidate genes for familial endometriosis. Our results also support the association of endometriosis with high-grade serous carcinoma. Further studies are required to validate the findings and to reveal the exact pathogenesis mechanisms of endometriosis. Elucidating the genetic background of endometriosis defines the etiology of the disease and provides opportunities for expedited diagnostics and personalized treatments.


Asunto(s)
Carcinoma , Endometriosis , Neoplasias Ováricas , Humanos , Femenino , Anciano , Endometriosis/genética , Predisposición Genética a la Enfermedad , Secuenciación del Exoma , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología
2.
Genes Chromosomes Cancer ; 62(1): 27-38, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35822448

RESUMEN

Uterine leiomyomas, or fibroids, are very common smooth muscle tumors that arise from the myometrium. They can be divided into distinct molecular subtypes. We have previously shown that 3'RNA-sequencing is highly effective in classifying archival formalin-fixed paraffin-embedded (FFPE) leiomyomas according to the underlying mutation. In this study, we performed 3'RNA-sequencing with 111 FFPE leiomyomas previously classified as negative for driver alterations in mediator complex subunit 12 (MED12), high mobility group AT-hook 2 (HMGA2), and fumarate hydratase (FH) by Sanger sequencing and immunohistochemistry. This revealed 43 tumors that displayed expression features typically seen in HMGA2-positive tumors, including overexpression of PLAG1. We explored 12 such leiomyomas by whole-genome sequencing to identify their underlying genomic drivers and to evaluate the feasibility of detecting chromosomal driver alterations from FFPE material. Four tumors with significant HMGA2 overexpression at the protein-level served as controls. We identified chromosomal rearrangements targeting either HMGA2, HMGA1, or PLAG1 in all 16 tumors, demonstrating that it is possible to detect chromosomal driver alterations in archival leiomyoma specimens as old as 18 years. Furthermore, two tumors displayed biallelic loss of DEPDC5 and one tumor harbored a COL4A5-COL4A6 deletion. These observations suggest that instead of only HMGA2-positive leiomyomas, a distinct leiomyoma subtype is characterized by rearrangements targeting either HMGA2, HMGA1, or PLAG1. The results indicate that the frequency of HMGA2-positive leiomyomas may be higher than estimated in previous studies where immunohistochemistry has been used. This study also demonstrates the feasibility of detecting chromosomal driver alterations from archival FFPE material.


Asunto(s)
Leiomioma , Neoplasias Uterinas , Femenino , Humanos , Neoplasias Uterinas/genética , Neoplasias Uterinas/patología , Proteína HMGA1a/genética , Leiomioma/genética , Leiomioma/patología , Proteína HMGA2/genética , Proteína HMGA2/metabolismo , Fumarato Hidratasa/genética , Aberraciones Cromosómicas , Mutación , Factores de Transcripción/genética , ARN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
3.
Exp Mol Pathol ; 126: 104760, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35367216

RESUMEN

Uterine leiomyomas, or fibroids, are very common smooth muscle tumors. Their potential to metastasize or transform into leiomyosarcomas is extremely low. Here, we report a patient who underwent hysterectomy due to a large leiomyoma and who was diagnosed with pulmonary tumors seven and nine years later. Histopathological re-evaluation confirmed the cellular leiomyoma diagnosis for the uterine tumor, whereas the pulmonary tumors met the diagnostic criteria of a leiomyosarcoma. Whole-exome sequencing revealed very similar mutational profiles in all three tumors, including a somatic homozygous deletion in a rare, but well-established leiomyoma driver gene FH. Tumor evolution analysis confirmed the clonal origin of all three tumors. In addition to mutations shared by all three tumors, pulmonary tumors harbored additional alterations affecting e.g. the cancer-associated genes NRG1 and MYOCD. The second pulmonary leiomyosarcoma harbored additional changes, including a mutation in FGFR1. In global gene expression profiling, the uterine tumor showed similar expression patterns as other FH-deficient leiomyomas. Taken together, this comprehensive molecular data supports the occasional metastatic capability and malignant transformation of uterine leiomyomas. Further studies are required to confirm whether FH-deficient tumors and/or tumors with cellular histopathology have higher malignant potential than other uterine leiomyomas.


Asunto(s)
Leiomioma , Leiomiosarcoma , Neoplasias Pulmonares , Neoplasias Uterinas , Femenino , Fumarato Hidratasa/genética , Fumarato Hidratasa/metabolismo , Homocigoto , Humanos , Leiomioma/genética , Leiomiosarcoma/genética , Leiomiosarcoma/patología , Neoplasias Pulmonares/genética , Eliminación de Secuencia , Neoplasias Uterinas/genética , Neoplasias Uterinas/patología
4.
Oncogenesis ; 11(1): 52, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36068196

RESUMEN

Uterine leiomyomas, or fibroids, are the most common tumors in women of reproductive age. Uterine leiomyomas can be classified into at least three main molecular subtypes according to mutations affecting MED12, HMGA2, or FH. FH-deficient leiomyomas are characterized by activation of the NRF2 pathway, including upregulation of the NRF2 target gene AKR1B10. Here, we have identified a novel leiomyoma subtype showing AKR1B10 expression but no alterations in FH or other known driver genes. Whole-exome and whole-genome sequencing revealed biallelic mutations in key genes involved in neddylation of the Cullin 3-RING E3 ligase, including UBE2M, NEDD8, CUL3, and NAE1. 3'RNA sequencing confirmed a distinct molecular subtype with activation of the NRF2 pathway. Most tumors displayed cellular histopathology, perivascular hypercellularity, and characteristics typically seen in FH-deficient leiomyomas. These results suggest a novel leiomyoma subtype that is characterized by distinct morphological features, genetic alterations disrupting neddylation of the Cullin 3-RING E3 ligase, and oncogenic NRF2 activation. They also present defective neddylation as a novel mechanism leading to aberrant NRF2 signaling. Molecular characterization of uterine leiomyomas provides novel opportunities for targeted treatment options.

5.
Cancers (Basel) ; 12(12)2020 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-33352722

RESUMEN

Uterine leiomyomas are benign smooth muscle tumors occurring in 70% of women of reproductive age. The majority of leiomyomas harbor one of three well-established genetic changes: a hotspot mutation in MED12, overexpression of HMGA2, or biallelic loss of FH. The majority of studies have classified leiomyomas by complex and costly methods, such as whole-genome sequencing, or by combining multiple traditional methods, such as immunohistochemistry and Sanger sequencing. The type of specimens and the amount of resources available often determine the choice. A more universal, cost-effective, and scalable method for classifying leiomyomas is needed. The aim of this study was to evaluate whether RNA sequencing can accurately classify formalin-fixed paraffin-embedded (FFPE) leiomyomas. We performed 3'RNA sequencing with 44 leiomyoma and 5 myometrium FFPE samples, revealing that the samples clustered according to the mutation status of MED12, HMGA2, and FH. Furthermore, we confirmed each subtype in a publicly available fresh frozen dataset. These results indicate that a targeted 3'RNA sequencing panel could serve as a cost-effective and robust tool for stratifying both fresh frozen and FFPE leiomyomas. This study also highlights 3'RNA sequencing as a promising method for studying the abundance of unexploited tissue material that is routinely stored in hospital archives.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA