RESUMEN
BACKGROUND: Curcumin, derived from the rhizome Curcuma longa, is a natural anti-cancer agent and has been shown to inhibit proliferation and survival of tumor cells. Although the anti-cancer effects of curcumin are well established, detailed understanding of the signaling pathways altered by curcumin is still lacking. In this study, we carried out SILAC-based quantitative proteomic analysis of a HNSCC cell line (CAL 27) to investigate tyrosine signaling in response to curcumin. RESULTS: Using high resolution Orbitrap Fusion Tribrid Fourier transform mass spectrometer, we identified 627 phosphotyrosine sites mapping to 359 proteins. We observed alterations in the level of phosphorylation of 304 sites corresponding to 197 proteins upon curcumin treatment. We report here for the first time, curcumin-induced alterations in the phosphorylation of several kinases including TNK2, FRK, AXL, MAPK12 and phosphatases such as PTPN6, PTPRK, and INPPL1 among others. Pathway analysis revealed that the proteins differentially phosphorylated in response to curcumin are known to be involved in focal adhesion kinase signaling and actin cytoskeleton reorganization. CONCLUSIONS: The study indicates that curcumin may regulate cellular processes such as proliferation and migration through perturbation of the focal adhesion kinase pathway. This is the first quantitative phosphoproteomics-based study demonstrating the signaling events that are altered in response to curcumin. Considering the importance of curcumin as an anti-cancer agent, this study will significantly improve the current knowledge of curcumin-mediated signaling in cancer.
RESUMEN
Esophageal squamous-cell carcinoma (ESCC) is one of the most common malignancies in Asia. Currently, surgical resection of early-stage tumor is the best available treatment. However, most patients present late when surgery is not an option. Data suggest that chemotherapy regimens are inadequate for clinical management of advanced cancer. Targeted therapy has emerged as one of the most promising approaches to treat several malignancies. A prerequisite for developing targeted therapy is prior knowledge of proteins and pathways that drive proliferation in malignancies. We carried out phosphotyrosine profiling across four different ESCC cell lines and compared it to non-neoplastic Het-1A cell line to identify activated tyrosine kinase signaling pathways in ESCC. A total of 278 unique phosphopeptides were identified across these cell lines. This included several tyrosine kinases and their substrates that were hyperphosphorylated in ESCC. Ephrin receptor A2 (EPHA2), a receptor tyrosine kinase, was hyperphosphorylated in all the ESCC cell lines used in the study. EPHA2 is reported to be oncogenic in several cancers and is also known to promote metastasis. Immunohistochemistry-based studies have revealed EPHA2 is overexpressed in nearly 50% of ESCC. We demonstrated EPHA2 as a potential therapeutic target in ESCC by carrying out siRNA-based knockdown studies. Knockdown of EPHA2 in ESCC cell line TE8 resulted in significant decrease in cell proliferation and invasion, suggesting it is a promising therapeutic target in ESCC that warrants further evaluation.
Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Efrina-A2/metabolismo , Neoplasias Esofágicas/metabolismo , Fosfotirosina/análisis , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Línea Celular , Línea Celular Tumoral , Efrina-A2/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago , Esófago/metabolismo , Esófago/patología , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Humanos , Espectrometría de Masas , Fosforilación , Fosfotirosina/genética , Fosfotirosina/metabolismoRESUMEN
Comprehensive N6-methyladenosine (m6A) epitranscriptomic profiling of primary tumors remains largely uncharted. Here, we profiled the m6A epitranscriptome of 10 nonneoplastic lung tissues and 51 lung adenocarcinoma (LUAD) tumors, integrating the corresponding transcriptomic, proteomic, and extensive clinical annotations. We identified distinct clusters and genes that were exclusively linked to disease progression through m6A modifications. In comparison with nonneoplastic lung tissues, we identified 430 transcripts to be hypo-methylated and 222 to be hyper-methylated in tumors. Among these genes, EML4 emerged as a novel metastatic driver, displaying significant hypermethylation in tumors. m6A modification promoted the translation of EML4, leading to its widespread overexpression in primary tumors. Functionally, EML4 modulated cytoskeleton dynamics by interacting with ARPC1A, enhancing lamellipodia formation, cellular motility, local invasion, and metastasis. Clinically, high EML4 protein abundance correlated with features of metastasis. METTL3 small-molecule inhibitor markedly diminished both EML4 m6A and protein abundance and efficiently suppressed lung metastases in vivo. Significance: Our study reveals a dynamic and functional epitranscriptomic landscape in LUAD, offering a valuable resource for further research in the field. We identified EML4 hypermethylation as a key driver of tumor metastasis, highlighting a novel therapeutic strategy of targeting EML4 to prevent LUAD metastasis.
Asunto(s)
Adenocarcinoma del Pulmón , Adenosina , Neoplasias Pulmonares , Transcriptoma , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Animales , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Línea Celular TumoralRESUMEN
Urogenital cancers, which include prostate, bladder, and kidney malignancies, exert a substantial impact on global cancer-related morbidity and mortality. Proteomic biomarkers, emerging as valuable tools, aim to enhance early detection, prognostic accuracy, and the development of personalized therapeutic strategies. This study undertook a comprehensive systematic review and meta-analysis of the existing literature investigating the role and potential of proteomic biomarkers in plasma, tissue, and urine samples in urogenital cancers. Our extensive search across several databases identified 1879 differentially expressed proteins from 37 studies, signifying their potential as unique biomarkers for these cancers. A meta-analysis of the significantly differentially expressed proteins was executed, accentuating the findings through visually intuitive volcano plots. A functional enrichment analysis unveiled their significant involvement in diverse biological processes, including signal transduction, immune response, cell communication, and cell growth. A pathway analysis highlighted the participation of key pathways such as the nectin adhesion pathway, TRAIL signaling pathway, and integrin signaling pathways. These findings not only pave the way for future investigations into early detection and targeted therapeutic approaches but also underscore the fundamental role of proteomics in advancing our understanding of the molecular mechanisms underpinning urogenital cancer pathogenesis. Ultimately, these findings hold remarkable potential to significantly enhance patient care and improve clinical outcomes.
RESUMEN
Esophageal squamous cell carcinoma (ESCC) is a heterogeneous cancer associated with a poor prognosis in advanced stages. In India, it is the sixth most common cause of cancer-related mortality. In this study, we employed high-resolution mass spectrometry-based quantitative proteomics to characterize the differential protein expression pattern associated with ESCC. We identified several differentially expressed proteins including PDPN, TOP2A, POSTN and MMP2 that were overexpressed in ESCC. In addition, we identified downregulation of esophagus tissue-enriched proteins such as SLURP1, PADI1, CSTA, small proline-rich proteins such as SPRR3, SPRR2A, SPRR1A, KRT4, and KRT13, involved in squamous cell differentiation. We identified several overexpressed proteins mapped to the 3q24-29 chromosomal region, aligning with CNV alterations in this region reported in several published studies. Among these, we identified overexpression of SOX2, TP63, IGF2BP2 and RNF13 that are encoded by genes in the 3q26 region. Functional enrichment analysis revealed proteins involved in cell cycle pathways, DNA replication, spliceosome, and DNA repair pathways. We identified the overexpression of multiple proteins that play a major role in alleviating ER stress, including SYVN1 and SEL1L. The SYVN1/SEL1L complex is an essential part of the ER quality control machinery clearing misfolded proteins from the ER. SYVN1 is an E3 ubiquitin ligase that ubiquitinates ER-resident proteins. Interestingly, there are also other non-canonical substrates of SYVN1 which are known to play a crucial role in tumor progression. Thus, SYVN1 could be a potential therapeutic target in ESCC.
RESUMEN
Purpose: Age-related macular degeneration (AMD) is one of the leading causes of irreversible central vision loss in the elderly population. The current study aims to find non-invasive prognostic biomarkers in the urine specimens of the AMD patients. Methods: Peripheral blood and urine samples were collected from 23 controls and 61 AMD patients. Genomic DNA was extracted from the buffy coat of peripheral blood. Allele specific PCR was used to assay SNPs in complement factor H (CFH), complement component 3 (C3). Comparative proteomic analysis of urine samples from early AMD, choroidal neovascular membrane (CNVM), geographic atrophy (GA), and healthy controls was performed using isobaric labelling followed by mass spectrometry. Validation was performed using enzyme-linked immunosorbent assay (ELISA). Results: Comparative proteomic analysis of urine samples identified 751 proteins, of which 383 proteins were found to be differentially expressed in various groups of AMD patients. Gene ontology classification of differentially expressed proteins revealed the majority of them were involved in catalytic functions and binding activities. Pathway analysis showed cell adhesion molecule pathways (CAMs), Complement and coagulation cascades, to be significantly deregulated in AMD. Upon validation by ELISA, SERPINA-1 (Alpha1 antitrypsin), TIMP-1 (Tissue inhibitor of matrix metaloprotease-1), APOA-1 (Apolipoprotein A-1) were significantly over-expressed in AMD (n = 61) patients compared to controls (n = 23). A logistic model of APOA-1 in combination with CFH and C3 polymorphisms predicted the risk of developing AMD with 82% accuracy. Conclusion: This study gives us a preliminary data on non-invasive predictive biomarkers for AMD, which can be further validated in a large cohort and translated for diagnostic use.
Asunto(s)
Degeneración Macular , Proteómica , Anciano , Estudios de Casos y Controles , Diferenciación Celular , Genotipo , Humanos , Degeneración Macular/diagnóstico , Degeneración Macular/genética , Polimorfismo de Nucleótido SimpleRESUMEN
Though smoking remains one of the established risk factors of esophageal squamous cell carcinoma, there is limited data on molecular alterations associated with cigarette smoke exposure in esophageal cells. To investigate molecular alterations associated with chronic exposure to cigarette smoke, non-neoplastic human esophageal epithelial cells were treated with cigarette smoke condensate (CSC) for up to 8 months. Chronic treatment with CSC increased cell proliferation and invasive ability of non-neoplastic esophageal cells. Whole exome sequence analysis of CSC treated cells revealed several mutations and copy number variations. This included loss of high mobility group nucleosomal binding domain 2 (HMGN2) and a missense variant in mediator complex subunit 1 (MED1). Both these genes play an important role in DNA repair. Global proteomic and phosphoproteomic profiling of CSC treated cells lead to the identification of 38 differentially expressed and 171 differentially phosphorylated proteins. Bioinformatics analysis of differentially expressed proteins and phosphoproteins revealed that most of these proteins are associated with DNA damage response pathway. Proteomics data revealed decreased expression of HMGN2 and hypophosphorylation of MED1. Exogenous expression of HMGN2 and MED1 lead to decreased proliferative and invasive ability of smoke exposed cells. Immunohistochemical labeling of HMGN2 in primary ESCC tumor tissue sections (from smokers) showed no detectable expression while strong to moderate staining of HMGN2 was observed in normal esophageal tissues. Our data suggests that cigarette smoke perturbs expression of proteins associated with DNA damage response pathways which might play a vital role in development of ESCC.
RESUMEN
The scientific basis of intracranial aneurysm (IA) formation, its rupture and further development of cerebral vasospasm is incompletely understood. Aberrant protein expression may drive structural alterations of vasculature found in IA. Deciphering the molecular mechanisms underlying these events will lead to identification of early detection biomarkers and in turn, improved treatment outcomes. To unravel differential protein expression in three clinical subgroups of IA patients: (1) unruptured aneurysm, (2) ruptured aneurysm without vasospasm, (3) ruptured aneurysm who developed vasospasm, we performed untargeted quantitative proteomic analysis of aneurysm tissue and serum samples from three subgroups of IA patients and control subjects. Candidate molecules were then validated in a larger cohort of patients using enzyme-linked immunosorbent assay. A total of 937 and 294 proteins were identified from aneurysm tissue and serum samples, respectively. Several proteins that are known to maintain structural integrity of vasculature were found to be dysregulated in the context of aneurysm. ORM1, a glycoprotein, was significantly upregulated in both tissue and serum samples of unruptured aneurysm patients. We employed a larger cohort of subjects (n = 26) and validated ORM1 as a potential biomarker for screening of unruptured aneurysms. Samples from ruptured aneurysms with vasospasm showed significant upregulation of MMP9, a protease, compared with ruptured aneurysms without vasospasm. We validated MMP9 as a potential biomarker for vasospasm in a larger cohort (n = 52). This study reports the first global proteomic analysis of the entire clinical spectrum of IA. Furthermore, this study suggests ORM1 and MMP9 as potential biomarkers for unruptured aneurysm and cerebral vasospasm, respectively.
Asunto(s)
Biomarcadores , Aneurisma Intracraneal/metabolismo , Proteoma , Proteómica , Adulto , Aneurisma Roto/metabolismo , Biomarcadores/sangre , Cromatografía Liquida , Biología Computacional/métodos , Ensayo de Inmunoadsorción Enzimática/métodos , Femenino , Humanos , Aneurisma Intracraneal/diagnóstico , Aneurisma Intracraneal/etiología , Aneurisma Intracraneal/cirugía , Masculino , Persona de Mediana Edad , Modelos Biológicos , Proteómica/métodos , Curva ROC , Reproducibilidad de los Resultados , Espectrometría de Masas en TándemRESUMEN
Lung cancer is the leading cause of preventable death globally and is broadly classified into adenocarcinoma and squamous cell carcinoma. In this study, we carried out mass spectrometry based quantitative proteomic analysis of lung adenocarcinoma and squamous cell carcinoma primary tissue by employing the isobaric tags for relative and absolute quantitation (iTRAQ) approach. Proteomic data analyzed using SEQUEST algorithm resulted in identification of 25,998 peptides corresponding to 4342 proteins of which 610 proteins were differentially expressed (≥ 2-fold) between adenocarcinoma and squamous cell carcinoma. These differentially expressed proteins were further classified by gene ontology for their localization and biological processes. Pathway analysis of differentially expressed proteins revealed distinct alterations in networks and pathways in both adenocarcinoma and squamous cell carcinoma. We identified a subset of proteins that show inverse expression pattern between lung adenocarcinoma and squamous cell carcinoma. Such proteins may serve as potential markers to distinguish between the two subtypes. Mass spectrometric data generated in this study was submitted to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository with the dataset identifier PXD008700.
RESUMEN
Thrombopoietin (THPO), also known as megakaryocyte growth and development factor (MGDF), is a cytokine involved in the production of platelets. THPO is a glycoprotein produced by liver and kidney. It regulates the production of platelets by stimulating the differentiation and maturation of megakaryocyte progenitors. It acts as a ligand for MPL receptor, a member of the hematopoietic cytokine receptor superfamily and is essential for megakaryocyte maturation. THPO binding induces homodimerization of the receptor which results in activation of JAKSTAT and MAPK signaling cascades that subsequently control cellular proliferation, differentiation and other signaling events. Despite the importance of THPO signaling in various diseases and biological processes, a detailed signaling network of THPO is not available in any publicly available database. Therefore, in this study, we present a resource of signaling events induced by THPO that was manually curated from published literature on THPO. Our manual curation of thrombopoietin pathway resulted in identification of 48 molecular associations, 66 catalytic reactions, 100 gene regulation events, 19 protein translocation events and 43 activation/inhibition reactions that occur upon activation of thrombopoietin receptor by THPO. THPO signaling pathway is made available on NetPath, a freely available human signaling pathway resource developed previously by our group. We believe this resource will provide a platform for scientific community to accelerate further research in this area on potential therapeutic interventions.
RESUMEN
BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers with high mortality rate. Cigarette smoke and chewing tobacco are well known risk factors associated with ESCC. However, molecular mechanisms associated with development of ESCC among smokers and chewers are poorly understood. MicroRNAs play an important role in regulating physiological and disease processes including esophageal cancer. OBJECTIVE AND METHODS: In this study, we developed an in vitro model by treating non-neoplastic Het- 1A esophageal cell line with cigarette smoke and chewing tobacco. We carried out miRNA sequencing on Illumina HiSeq 2500 platform and compared miRNA expression pattern across cigarette smoke and chewing tobacco treated Het-1A cells with untreated cells. RESULTS: We identified and quantified 433 miRNAs in both smoke exposed and chewing tobacco treated cells, of which 13 miRNAs showed significantly altered expression in cigarette smoke exposed cells while 25 miRNAs showed significantly altered expression in chewing tobacco treated cells. In addition, we predicted novel miRNAs from these data-sets. We evaluated miRNAs that showed selective or context dependent expression pattern in cigarette smoke exposed or chewing tobacco treated cells. CONCLUSION: In this study, we have comprehensively mapped miRNA expression pattern in response to cigarette smoke and chewing tobacco in Het-1A cells. We identified miRNAs that show altered expression in these cell models.
Asunto(s)
Transformación Celular Neoplásica/genética , Esófago/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , MicroARNs/genética , Fumar/efectos adversos , Tabaco sin Humo/efectos adversos , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/inducido químicamente , Transformación Celular Neoplásica/patología , Células Cultivadas , Esófago/metabolismo , Esófago/patología , Perfilación de la Expresión Génica , Humanos , Análisis de Secuencia de ARN/métodosRESUMEN
Interferon gamma (IFN-γ), is a cytokine, which is an important regulator of host defense system by mediating both innate and adaptive immune responses. IFN-γ signaling is primarily associated with inflammation and cell-mediated immune responses. IFN-γ is also represented as antitumor cytokine which facilitates immunosurveillance in tumor cells. In addition, IFN-γ mediated signaling also elicits pro-tumorigenic transformations and promotes tumor progression. Impact of IFN-γ signaling in mammalian cells has been widely studied which indicate that IFN-γ orchestrates distinct cellular functions including immunomodulation, leukocyte trafficking, apoptosis, anti-microbial, and both anti- and pro-tumorigenic role. However, a detailed network of IFN-γ signaling pathway is currently lacking. Therefore, we systematically curated the literature information pertaining to IFN-γ signaling and develop a comprehensive signaling network to facilitate better understanding of IFN-γ mediated signaling. A total of 124 proteins were catalogued that were experimentally proven to be involved in IFN-γ signaling cascade. These 124 proteins were found to participate in 81 protein-protein interactions, 94 post-translational modifications, 20 translocation events, 54 activation/inhibiton reactions. Further, 236 differential expressed genes were also documented in IFN-γ mediated signaling. IFN-γ signaling pathway is made freely available to scientific audience through NetPath at ( http://www.netpath.org/pathways?path_id=NetPath_32 ). We believe that documentation of reactions pertaining to IFN-γ signaling and development of pathway map will facilitate further research in IFN-γ associated human diseases including cancer.
RESUMEN
BACKGROUND: Dysregulation of miRNAs is associated with the development of non-small cell lung cancer (NSCLC). It is imperative to study the dysregulation of miRNAs by cigarette smoke which will affect their targets, either leading to the overexpression of oncoproteins or downregulation of tumor suppressor proteins. OBJECTIVE AND METHODS: In this study, we carried out miRNA sequencing and SILAC-based proteomic analysis of H358 cells chronically exposed to cigarette smoke condensate. Using bioinformatics analysis, we mapped the dysregulated miRNAs to differentially expressed target proteins identified in our data. Gene ontology-based enrichment and pathway analysis was performed using the deregulated targets to study the role of cigarette smoke-mediated miRNA dysregulation in NSCLC cell line. RESULTS: miRNA sequencing resulted in the identification of 208 miRNAs, of which 6 miRNAs were found to be significantly dysregulated (2 fold, Log Base 2; p-value ≤ 0.05) in H358-Smoke cells. Proteomic analysis of the smoke exposed cells compared to the untreated parental cells resulted in the quantification of 2,610 proteins, of which 690 proteins were found to be differentially expressed (fold change ≥ 2). Gene ontology based analysis of target proteins revealed enrichment of proteins driving metabolism and a decrease in expression of proteins associated with immune response in the cells exposed to cigarette smoke. Pathway study using Ingenuity Pathway Analysis (IPA) revealed activation of NRF2-mediated oxidative stress response and actin-cytoskeleton signaling, and repression of protein kinase A signaling in H358-Smoke cells. We also identified 5 novel miRNAs in H358-Smoke cells using unassigned reads of small RNA-Seq dataset. CONCLUSION: In summary, this study indicates that chronic exposure to cigarette smoke leads to widespread dysregulation of miRNAs and their targets, resulting in signaling aberrations in NSCLC cell line. The miRNAs and their targets identified in the study need to be further investigated to explore their role as potential therapeutic targets and/or molecular markers in NSCLC especially in smokers.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/patología , MicroARNs/genética , Proteoma/metabolismo , Fumar/efectos adversos , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/inducido químicamente , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Biología Computacional , Humanos , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteómica/métodos , Análisis de Secuencia de ARN/métodos , Transducción de Señal , Células Tumorales CultivadasRESUMEN
Proteomics analysis of chronic cigarette smoke exposure is a rapidly emerging postgenomics research field. While smoking is a major cause of lung cancer, functional studies using proteomics approaches could enrich our mechanistic understanding of the elusive lung cancer global molecular signaling and cigarette smoke relationship. We report in this study on a stable isotope labeling by amino acids in cell culture-based quantitative phosphoproteomic analysis of a human lung mucoepidermoid carcinoma cell line, H292 cells, chronically exposed to cigarette smoke. Using high resolution Orbitrap Velos mass spectrometer, we identified the hyperphosphorylation of 493 sites, which corresponds to 341 proteins and 195 hypophosphorylated sites, mapping to 142 proteins upon smoke exposure (2.0-fold change). We report differential phosphorylation of multiple kinases, including PAK6, EPHA4, LYN, mitogen-activated protein kinase, and phosphatases, including TMEM55B, PTPN14, TIGAR, among others, in response to chronic cigarette smoke exposure. Bioinformatics analysis revealed that the molecules differentially phosphorylated upon chronic exposure of cigarette smoke are associated with PI3K/AKT/mTOR and CDC42-PAK signaling pathways. These signaling networks are involved in multiple cellular processes, including cell polarity, cytoskeletal remodeling, cellular migration, protein synthesis, autophagy, and apoptosis. The present study contributes to emerging proteomics insights on cigarette smoke mediated global signaling in lung cells, which in turn may aid in development of precision medicine therapeutics and postgenomics biomarkers.
Asunto(s)
Células Epiteliales/efectos de los fármacos , Nicotiana/efectos adversos , Fosfoproteínas/genética , Proteoma/genética , Mucosa Respiratoria/efectos de los fármacos , Humo/efectos adversos , Secuencia de Aminoácidos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Anotación de Secuencia Molecular , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismoRESUMEN
Modulation of signaling pathways upon chronic arsenic exposure remains poorly studied. Here, we carried out SILAC-based quantitative phosphoproteomics analysis to dissect the signaling induced upon chronic arsenic exposure in human skin keratinocyte cell line, HaCaT. We identified 4171 unique phosphosites derived from 2000 proteins. We observed differential phosphorylation of 406 phosphosites (twofold) corresponding to 305 proteins. Several pathways involved in cytoskeleton maintenance and organization were found to be significantly enriched (p<0.05). Our data revealed altered phosphorylation of proteins associated with adherens junction remodeling and actin polymerization. Kinases such as protein kinase C iota type (PRKCI), mitogen-activated protein kinase kinase kinase 1 (MAP3K1), tyrosine-protein kinase BAZ1B (BAZ1B) and STE20 like kinase (SLK) were found to be hyperphosphorylated. Our study provides novel insights into signaling perturbations associated with chronic arsenic exposure in human skin keratinocytes. All MS/MS data have been deposited to the ProteomeXchange with identifier PXD004868.
Asunto(s)
Arsénico/toxicidad , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Humanos , Fosfoproteínas/metabolismo , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Titanio/químicaRESUMEN
Chronic exposure to cigarette smoke markedly increases the risk for lung cancer. Regulation of gene expression at the post-transcriptional level by miRNAs influences a variety of cancer-related interactomes. Yet, relatively little is known on the effects of long-term cigarette smoke exposure on miRNA expression and gene regulation. NCI-H292 (H292) is a cell line sensitive to cigarette smoke with mucoepidermoid characteristics in culture. We report, in this study, original observations on long-term (12 months) cigarette smoke effects in the H292 cell line, using microarray-based miRNA expression profiling, and stable isotopic labeling with amino acids in cell culture-based quantitative proteomic analysis. We identified 112 upregulated and 147 downregulated miRNAs (by twofold) in cigarette smoke-treated H292 cells. The liquid chromatography-tandem mass spectrometry analysis identified 3,959 proteins, of which, 303 proteins were overexpressed and 112 proteins downregulated (by twofold). We observed 39 miRNA target pairs (proven targets) that were differentially expressed in response to chronic cigarette smoke exposure. Gene ontology analysis of the target proteins revealed enrichment of proteins in biological processes driving metabolism, cell communication, and nucleic acid metabolism. Pathway analysis revealed the enrichment of phagosome maturation, antigen presentation pathway, nuclear factor erythroid 2-related factor 2-mediated oxidative stress response, and cholesterol biosynthesis pathways in cigarette smoke-exposed cells. In conclusion, this report makes an important contribution to knowledge on molecular changes in a lung cell line in response to long term cigarette smoke exposure. The findings might inform future strategies for drug target, biomarker and diagnostics innovation in lung cancer, and clinical oncology. These observations also call for further research on the extent to which continuing or stopping cigarette smoking in patients diagnosed with lung cancer translates into molecular and clinical outcomes.
Asunto(s)
Fumar Cigarrillos/efectos adversos , Neoplasias Pulmonares/genética , MicroARNs/metabolismo , Biomarcadores/análisis , Carcinoma de Pulmón de Células no Pequeñas , Línea Celular Tumoral , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Neoplasias Pulmonares/diagnósticoRESUMEN
Glutamate metabolism plays a vital role in biosynthesis of nucleic acids and proteins. It is also associated with a number of different stress responses. Deficiency of enzymes involved in glutamate metabolism is associated with various disorders including gyrate atrophy, hyperammonemia, hemolytic anemia, γ-hydoxybutyric aciduria and 5-oxoprolinuria. Here, we present a pathway map of glutamate metabolism representing metabolic intermediates in the pathway, 107 regulator molecules, 9 interactors and 3 types of post-translational modifications. This pathway map provides detailed information about enzyme regulation, protein-enzyme interactions, post-translational modifications of enzymes and disorders due to enzyme deficiency. The information included in the map was based on published experimental evidence reported from mammalian systems.
RESUMEN
Interleukin-10 (IL-10) is an anti-inflammatory cytokine with important immunoregulatory functions. It is primarily secreted by antigen-presenting cells such as activated T-cells, monocytes, B-cells and macrophages. In biologically functional form, it exists as a homodimer that binds to tetrameric heterodimer IL-10 receptor and induces downstream signaling. IL-10 is associated with survival, proliferation and anti-apoptotic activities of various cancers such as Burkitt lymphoma, non-Hodgkins lymphoma and non-small scell lung cancer. In addition, it plays a central role in survival and persistence of intracellular pathogens such as Leishmania donovani, Mycobacterium tuberculosis and Trypanosoma cruzi inside the host. The signaling mechanisms of IL-10 cytokine are not well explored and a well annotated pathway map has been lacking. To this end, we developed a pathway resource by manually annotating the IL-10 induced signaling molecules derived from literature. The reactions were categorized under molecular associations, activation/inhibition, catalysis, transport and gene regulation. In all, 37 molecules and 76 reactions were annotated. The IL-10 signaling pathway can be freely accessed through NetPath, a resource of signal transduction pathways previously developed by our group.
RESUMEN
Interleukin-17 (IL-17) belongs to a relatively new family of cytokines that has garnered attention as the signature cytokine of Th17 cells. This cytokine family consists of 6 ligands, which bind to 5 receptor subtypes and induce downstream signaling. Although the receptors are ubiquitously expressed, cellular responses to ligands vary across tissues. The cytokine family is associated with various autoimmune disorders including rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, asthma and psoriasis in addition to being implicated in the pathogenesis of cancer. In addition, this family plays a role in host defense against bacterial and fungal infections. The signaling mechanisms of the IL-17 family of proinflammatory cytokines are not well explored. In this study, we present a resource of literature-annotated reactions induced by IL-17. The reactions are catalogued under 5 categories, namely; molecular association, catalysis, transport, activation/inhibition and gene regulation. A total of 93 molecules and 122 reactions have been annotated. The IL-17 pathway is freely available through NetPath, a resource of signal transduction pathways previously developed by our group.
RESUMEN
Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive cancers with poor prognosis. Here, we carried out liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS)-based untargeted metabolomic analysis of ESCC serum samples. Statistical analysis resulted in the identification of 652 significantly dysregulated molecular features in serum from ESCC patients as compared to the healthy subjects. Phosphatidylcholines were identified as a major class of dysregulated metabolites in this study suggesting potential perturbation of phosphocholine metabolism in ESCC. By using a targeted MS/MS approach both in positive and negative mode, we were able to characterize and confirm the structure of seven metabolites. Our study describes a quantitative LC-MS approach for characterizing dysregulated lipid metabolism in ESCC. BIOLOGICAL SIGNIFICANCE: Altered metabolism is a hallmark of cancer. We carried out (LC-MS)-based untargeted metabolomic profiling of serum from esophageal squamous cell carcinoma (ESCC) patients to characterize dysregulated metabolites. Phosphatidylcholine metabolism was found to be significantly altered in ESCC. Our study illustrates the use of mass spectrometry-based metabolomic analysis to characterize molecular alterations associated with ESCC. This article is part of a Special Issue entitled: Proteomics in India.