Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Trends Biochem Sci ; 46(9): 758-771, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33736931

RESUMEN

Modified bases act as marks on cellular RNAs so that they can be distinguished from foreign RNAs, reducing innate immune responses to endogenous RNA. In humans, mutations giving reduced levels of one base modification, adenosine-to-inosine deamination, cause a viral infection mimic syndrome, a congenital encephalitis with aberrant interferon induction. These Aicardi-Goutières syndrome 6 mutations affect adenosine deaminase acting on RNA 1 (ADAR1), which generates inosines in endogenous double-stranded (ds)RNA. The inosine base alters dsRNA structure to prevent aberrant activation of antiviral cytosolic helicase RIG-I-like receptors. We review how effects of inosines, ADARs, and other modified bases have been shown to be important in innate immunity and cancer.


Asunto(s)
Inmunidad Innata , Edición de ARN , Proteínas de Unión al ARN , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Humanos , ARN Bicatenario , Proteínas de Unión al ARN/metabolismo , Transcriptoma
2.
BMC Biol ; 18(1): 15, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-32059717

RESUMEN

BACKGROUND: In fly brains, the Drosophila Adar (adenosine deaminase acting on RNA) enzyme edits hundreds of transcripts to generate edited isoforms of encoded proteins. Nearly all editing events are absent or less efficient in larvae but increase at metamorphosis; the larger number and higher levels of editing suggest editing is most required when the brain is most complex. This idea is consistent with the fact that Adar mutations affect the adult brain most dramatically. However, it is unknown whether Drosophila Adar RNA editing events mediate some coherent physiological effect. To address this question, we performed a genetic screen for suppressors of Adar mutant defects. Adar5G1 null mutant flies are partially viable, severely locomotion defective, aberrantly accumulate axonal neurotransmitter pre-synaptic vesicles and associated proteins, and develop an age-dependent vacuolar brain neurodegeneration. RESULTS: A genetic screen revealed suppression of all Adar5G1 mutant phenotypes tested by reduced dosage of the Tor gene, which encodes a pro-growth kinase that increases translation and reduces autophagy in well-fed conditions. Suppression of Adar5G1 phenotypes by reduced Tor is due to increased autophagy; overexpression of Atg5, which increases canonical autophagy initiation, reduces aberrant accumulation of synaptic vesicle proteins and suppresses all Adar mutant phenotypes tested. Endosomal microautophagy (eMI) is another Tor-inhibited autophagy pathway involved in synaptic homeostasis in Drosophila. Increased expression of the key eMI protein Hsc70-4 also reduces aberrant accumulation of synaptic vesicle proteins and suppresses all Adar5G1 mutant phenotypes tested. CONCLUSIONS: These findings link Drosophila Adar mutant synaptic and neurotransmission defects to more general cellular defects in autophagy; presumably, edited isoforms of CNS proteins are required for optimum synaptic response capabilities in the brain during the behaviorally complex adult life stage.


Asunto(s)
Adenosina Desaminasa/genética , Autofagia , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Transmisión Sináptica/genética , Adenosina Desaminasa/metabolismo , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Larva/genética , Larva/crecimiento & desarrollo , Larva/fisiología , Masculino , Mutación
3.
RNA ; 23(9): 1317-1328, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28559490

RESUMEN

ADAR RNA editing enzymes (adenosine deaminases acting on RNA) that convert adenosine bases to inosines were first identified biochemically 30 years ago. Since then, studies on ADARs in genetic model organisms, and evolutionary comparisons between them, continue to reveal a surprising range of pleiotropic biological effects of ADARs. This review focuses on Drosophila melanogaster, which has a single Adar gene encoding a homolog of vertebrate ADAR2 that site-specifically edits hundreds of transcripts to change individual codons in ion channel subunits and membrane and cytoskeletal proteins. Drosophila ADAR is involved in the control of neuronal excitability and neurodegeneration and, intriguingly, in the control of neuronal plasticity and sleep. Drosophila ADAR also interacts strongly with RNA interference, a key antiviral defense mechanism in invertebrates. Recent crystal structures of human ADAR2 deaminase domain-RNA complexes help to interpret available information on Drosophila ADAR isoforms and on the evolution of ADARs from tRNA deaminase ADAT proteins. ADAR RNA editing is a paradigm for the now rapidly expanding range of RNA modifications in mRNAs and ncRNAs. Even with recent progress, much remains to be understood about these groundbreaking ADAR RNA modification systems.


Asunto(s)
Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Edición de ARN , Adenosina Desaminasa/química , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Evolución Molecular , Expresión Génica , Humanos , Isoenzimas , Sistema Nervioso/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Interferencia de ARN , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato , Vertebrados
4.
Nat Commun ; 11(1): 1580, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32221286

RESUMEN

ADAR RNA editing enzymes are high-affinity dsRNA-binding proteins that deaminate adenosines to inosines in pre-mRNA hairpins and also exert editing-independent effects. We generated a Drosophila AdarE374A mutant strain encoding a catalytically inactive Adar with CRISPR/Cas9. We demonstrate that Adar adenosine deamination activity is necessary for normal locomotion and prevents age-dependent neurodegeneration. The catalytically inactive protein, when expressed at a higher than physiological level, can rescue neurodegeneration in Adar mutants, suggesting also editing-independent effects. Furthermore, loss of Adar RNA editing activity leads to innate immune induction, indicating that Drosophila Adar, despite being the homolog of mammalian ADAR2, also has functions similar to mammalian ADAR1. The innate immune induction in fly Adar mutants is suppressed by silencing of Dicer-2, which has a RNA helicase domain similar to MDA5 that senses unedited dsRNAs in mammalian Adar1 mutants. Our work demonstrates that the single Adar enzyme in Drosophila unexpectedly has dual functions.


Asunto(s)
Adenosina Desaminasa/genética , Encéfalo/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/inmunología , Inmunidad Innata/genética , Edición de ARN/genética , Adenosina Desaminasa/química , Adenosina Monofosfato/metabolismo , Envejecimiento/patología , Animales , Catálisis , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica , Locomoción , Degeneración Nerviosa/patología , Mutación Puntual/genética , Dominios Proteicos , ARN Helicasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleasa III/metabolismo
5.
Biochim Biophys Acta Gene Regul Mech ; 1862(3): 356-369, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30391332

RESUMEN

Adenosine deaminases acting on RNA (ADARs) convert adenosine to inosine in dsRNA. ADAR editing in pre-mRNAs recodes open reading frames and alters splicing, mRNA structure and interactions with miRNAs. Here, we review ADAR gene expression, splice forms, posttranslational modifications, subcellular localizations and functions of ADAR protein isoforms. ADAR1 edits cellular dsRNA to prevent aberrant activation of cytoplasmic antiviral dsRNA sensors; ADAR1 mutations lead to aberrant expression of interferon in Aicardi Goutières syndrome (AGS), a human congenital encephalopathy. We review related studies on mouse Adar1 mutant phenotypes, their rescues by preventing signaling from the antiviral RIG-I-like Sensors (RLRs), as well as Adar1 mechanisms in innate immune suppression and other roles of Adar1, including editing-independent effects. ADAR2, expressed primarily in CNS, edits glutamate receptor transcripts; regulation of ADAR2 activity in response to neuronal activity mediates homeostatic synaptic plasticity of vertebrate AMPA and kainite receptors. In Drosophila, synapses and synaptic proteins show dramatic decreases at night during sleep; Drosophila Adar, an orthologue of ADAR2, edits hundreds of mRNAs; the most conserved editing events occur in transcripts encoding synapse-associated proteins. Adar mutant flies exhibit locomotion defects associated with very increased sleep pressure resulting from a failure of homeostatic synaptic processes. A study on Adar2 mutant mice identifies a new role in circadian rhythms, acting indirectly through miRNAs such as let-7 to modulate levels of let-7 target mRNAs; ADAR1 also regulates let-7 miRNA processing. Drosophila ADAR, an orthologue of vertebrate ADAR2, also regulates let-7 miRNA levels and Adar mutant flies have a circadian mutant phenotype.


Asunto(s)
Adenosina Desaminasa/metabolismo , Relojes Circadianos , Inmunidad Innata , Edición de ARN , Sueño , Adenosina Desaminasa/genética , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA