Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Crit Rev Food Sci Nutr ; 58(5): 858-876, 2018 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-27646175

RESUMEN

For a long time, food engineers have been trying to describe the physical phenomena that occur during food processing especially drying. Physics-based theoretical modeling is an important tool for the food engineers to reduce the hurdles of experimentation. Drying of food is a multi-physics phenomenon such as coupled heat and mass transfer. Moreover, food structure is multi-scale in nature, and the microstructural features play a great role in the food processing specially in drying. Previously simple macroscopic model was used to describe the drying phenomena which can give a little description about the smaller scale. The multiscale modeling technique can handle all the phenomena that occur during drying. In this special kind of modeling approach, the single scale models from bigger to smaller scales are interconnected. With the help of multiscale modeling framework, the transport process associated with drying can be studied on a smaller scale and the resulting information can be transferred to the bigger scale. This article is devoted to discussing the state of the art multi-scale modeling, its prospect and challenges in the field of drying technology. This article has also given some directions to how to overcome the challenges for successful implementation of multi-scale modeling.


Asunto(s)
Desecación , Manipulación de Alimentos/métodos , Modelos Teóricos
2.
Food Chem ; 325: 126932, 2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32387989

RESUMEN

Intermittent microwave convective drying (IMCD) is an advanced drying method where volumetric heating of samples drives the drying process. Understanding of the physical effects of IMCD on simultaneous heating and mass transfer as well as quality changes during IMCD is essential to predict accurately drying processes and quality attributes of end products. However, there is a lack of studies in this particular interest area. The aim of this research was to develop an IMCD model coupled with quality degradation kinetics by integrating a simultaneous heat and mass transfer model with Maxwell's equations for microwave heating and the chemical reaction kinetics model. The simulated results were compared with experimental results and a good agreement was observed. As it was found that power ratio (PR) had a vital role in altering quality attributes, different PR and drying conditions were considered to investigate the effects of IMCD on the drying kinetics. The simulated results showed that the model was capable of predicting accurately moisture and temperature distributions along with heath beneficial compounds, such as total phenolic content (TPC) and ascorbic acid (AA) as well as colour changes during IMCD processing. About 70% of AA was degraded during IMCD drying using PR of 1/3. However, losses were reduced when PR was reduced to 1/4 or 1/5. Likewise, TPC degraded significantly during the early stages (first 60 min) of IMCD processing but stabilised at later stages.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA