Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Plant Cell Rep ; 41(3): 675-698, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33713206

RESUMEN

Because of the rise in global temperature, heat stress has become a major concern for crop production. Heat stress deteriorates plant productivity and alters phenological and physiological responses that aid in precise monitoring and sensing of mild-to-severe transient heat stress. Plants have evolved several sophisticated mechanisms including hormone-signaling pathways to sense heat stimuli and acquire heat stress tolerance. In response to heat stress, ethylene, a gaseous hormone, is produced which is indispensable for plant growth and development and tolerance to various abiotic stresses including heat stress. The manipulation of ethylene in developing heat stress tolerance targeting ethylene biosynthesis and signaling pathways has brought promising out comes. Conversely increased ethylene biosynthesis and signaling seem to exhibit inhibitory effects in plant growth responses from primitive to maturity stages. This review mainly focuses on the recent studies of ethylene involvement in plant responses to heat stress and its functional regulation, and molecular mechanism underlying the plant responses in the mitigation of heat-induced damages. Furthermore, this review also describes the crosstalk between ethylene and other signaling molecules under heat stress and approaches to improve heat stress tolerance in plants.


Asunto(s)
Biodiversidad , Reguladores del Crecimiento de las Plantas , Etilenos , Respuesta al Choque Térmico , Hormonas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/metabolismo , Estrés Fisiológico/fisiología , Temperatura
2.
Int J Mol Sci ; 23(8)2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35457269

RESUMEN

Agriculture crop development and production may be hampered in the modern era because of the increasing prevalence of ecological problems around the world. In the last few centuries, plant and agrarian scientific experts have shown significant progress in promoting efficient and eco-friendly approaches for the green synthesis of nanoparticles (NPs), which are noteworthy due to their unique physio-biochemical features as well as their possible role and applications. They are thought to be powerful sensing molecules that regulate a wide range of significant physiological and biochemical processes in plants, from germination to senescence, as well as unique strategies for coping with changing environmental circumstances. This review highlights current knowledge on the plant extract-mediated synthesis of NPs, as well as their significance in reprogramming plant traits and ameliorating abiotic stresses. Nano particles-mediated modulation of phytohormone content in response to abiotic stress is also displayed. Additionally, the applications and limitations of green synthesized NPs in various scientific regimes have also been highlighted.


Asunto(s)
Nanopartículas , Estrés Fisiológico , Agricultura , Productos Agrícolas , Germinación
3.
Physiol Plant ; 172(2): 645-668, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33006143

RESUMEN

Drought has been highly prevalent around the world especially in Sub-Saharan Africa and South-East Asian countries. Consistent climatic instabilities and unpredictable rainfall patterns are further worsening the situation. Rice is a C3 staple cereal and an important food crop for the majority of the world's population and drought stress is one of the major growth retarding threats for rice that slashes down grain quality and yield. Drought deteriorates rice productivity and induces various acclimation responses that aids in stress mitigation. However, the complexity of traits associated with drought tolerance has made the understanding of drought stress-induced responses in rice a challenging process. An integrative understanding based on physiological adaptations, omics, transgenic and molecular breeding approaches successively backed up to developing drought stress-tolerant rice. The review represents a step forward to develop drought-resilient rice plants by exploiting the knowledge that collaborates with omics-based developments with integrative efforts to ensure the compilation of all the possible strategies undertaken to develop drought stress-tolerant rice.


Asunto(s)
Oryza , Adaptación Fisiológica , Sequías , Seguridad Alimentaria , Oryza/genética , Sitios de Carácter Cuantitativo
4.
Ecotoxicol Environ Saf ; 222: 112535, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34325203

RESUMEN

Salicylic acid (SA) is a well-known plant growth regulator, which participates in many physiological processes of plants under normal and stressful conditions. In this study, we investigated the impact of SA supplementation on the components of ascorbate-glutathione cycle and glyoxalase system, photosynthesis and growth of rice (Oryza sativa) plants subjected to arsenic (As) stress. Plants grown with As exhibited enhanced As uptake, increased oxidative stress, and photosynthesis and growth inhibition. Application of SA promoted photosynthesis and growth in plants with or without As stress by improving plant defense systems and reducing oxidative stress through interaction with ethylene and nitric oxide (NO). SA acted as an ethylene antagonist, reducing stress ethylene formation under As stress, while NO formation was induced. This resulted in coordinated control over the antioxidant defense systems and enhanced As tolerance, protecting photosynthesis and growth from As-induced damage. The study showed that positive responses of SA in promoting photosynthesis and growth under As stress were the result of its interplay with ethylene and NO, enhanced capacity of defense systems to reduce oxidative stress. The crosstalk of SA with ethylene and NO will be useful in augmenting the performance of rice plants under As stress.


Asunto(s)
Arsénico , Oryza , Antioxidantes , Arsénico/toxicidad , Estrés Oxidativo , Fotosíntesis , Reguladores del Crecimiento de las Plantas , Ácido Salicílico
5.
Physiol Mol Biol Plants ; 26(6): 1201-1213, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32549683

RESUMEN

The role of ethylene (through application of ethephon) in the regulation of nickel (Ni) stress tolerance was investigated in this study. Ethephon at concentration of 200 µl l-1 was applied to mustard (Brassica juncea) plants grown without and with 200 mg kg-1 soil Ni to study the increased growth traits, biochemical attributes, photosynthetic efficiency, nutrients content, activities of antioxidants such as superoxide dismutase, ascorbate peroxidase, glutathione reductase, and glutathione peroxidase, glyoxalase systems and enhanced the proline metabolism. In the absence of ethephon, Ni increased oxidative stress with a concomitant decrease in photosynthesis, growth and nutrients content. However, application of ethephon positively increased growth traits, photosynthetic parameters, nutrients content and also elevated the generation of antioxidants enzymes and glyoxalase systems, proline production to combat oxidative stress. Plants water relations and cellular homeostasis were maintained through increased photosynthetic efficiency and proline production. This signifies the role of ethylene in mediating Ni tolerance via regulating proline production and photosynthetic capacity. Ethephon can be used as an exogenous supplement on plants to confer Ni tolerance. The results can be exploited to develop tolerance in plants via gene editing technology encoding enzymes responsible for proline synthesis, antioxidant defence, glyoxalase systems and photosynthetic effectiveness.

6.
Plant Physiol ; 169(1): 73-84, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26246451

RESUMEN

Excessive heavy metals (HMs) in agricultural lands cause toxicities to plants, resulting in declines in crop productivity. Recent advances in ethylene biology research have established that ethylene is not only responsible for many important physiological activities in plants but also plays a pivotal role in HM stress tolerance. The manipulation of ethylene in plants to cope with HM stress through various approaches targeting either ethylene biosynthesis or the ethylene signaling pathway has brought promising outcomes. This review covers ethylene production and signal transduction in plant responses to HM stress, cross talk between ethylene and other signaling molecules under adverse HM stress conditions, and approaches to modify ethylene action to improve HM tolerance. From our current understanding about ethylene and its regulatory activities, it is believed that the optimization of endogenous ethylene levels in plants under HM stress would pave the way for developing transgenic crops with improved HM tolerance.


Asunto(s)
Etilenos/metabolismo , Metales Pesados/toxicidad , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/metabolismo , Transducción de Señal , Estrés Fisiológico/fisiología , Plantas/efectos de los fármacos , Receptor Cross-Talk
7.
Ecotoxicol Environ Saf ; 106: 54-61, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24836878

RESUMEN

We studied the response of ethylene-sensitive (Pusa Jai Kisan) and ethylene-insensitive (SS2) mustard (Brassica juncea) cultivars to 0, 0.5, 1.0 and 2.0 mM SO4(2-), and the effect of 1.0 mM SO4(2-) was studied in the amelioration of 50 µM cadmium (Cd). The Cd-induced oxidative stress and Cd accumulation were greater in SS2 than Pusa Jai Kisan, but sulfur (S) application alleviated Cd-induced oxidative stress more prominently in Pusa Jai Kisan by increasing S-metabolism and synthesis of reduced glutathione (GSH) and ethylene production; and promoted photosynthesis and plant dry mass under Cd stress. The ethylene-sensitive cultivar responded more to S treatment under Cd stress and showed increased activity of antioxidant system resulting in increased photosynthesis and growth. Cadmium treatment resulted in rapid increase in ethylene formation which adversely influenced photosynthesis and plant dry mass. However, S and ethephon application to Cd-treated plants lowered ethylene formation to optimal range responsible for maximal GSH synthesis and protection against Cd-induced oxidative stress. The similarity of the effectiveness of 1.0 mM SO4(2-) with 200 µL L(-1) ethylene source as ethephon in alleviation of 50 µM Cd further verifies that differential alleviation of Cd toxicity in the two cultivars by S was dependent on ethylene production. The results suggest that ethylene production determines Cd stress alleviation by S via regulatory interaction with antioxidant metabolism. Thus, ethylene production and sensitivity bear a prominent role in alleviation of Cd stress by S and can be used as a criterion for developing Cd tolerant genotypes.


Asunto(s)
Cadmio/toxicidad , Contaminantes Ambientales/toxicidad , Etilenos/metabolismo , Planta de la Mostaza/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Azufre/farmacología , Glutatión/metabolismo , Planta de la Mostaza/crecimiento & desarrollo , Planta de la Mostaza/metabolismo , Compuestos Organofosforados/farmacología , Fotosíntesis/efectos de los fármacos
8.
Plant Physiol Biochem ; 206: 108238, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38064902

RESUMEN

The climatic changes have great threats to sustainable agriculture and require efforts to ensure global food and nutritional security. In this regard, the plant strategic responses, including the induction of plant hormones/plant growth regulators (PGRs), play a substantial role in boosting plant immunity against environmental stress-induced adversities. In addition, secondary metabolites (SMs) have emerged as potential 'stress alleviators' that help plants to adapt against environmental stressors imposing detrimental impacts on plant health and survival. The introduction of SMs in plant biology has shed light on their beneficial effects in mitigating environmental crises. This review explores SMs-mediated plant defense responses and highlights the crosstalk between PGRs and SMs under diverse environmental stressors. In addition, genetic engineering approaches are discussed as a potential revenue to enhance plant hormone-mediated SM production in response to environmental cues. Thus, the present review aims to emphasize the significance of SMs implications with PGRs association and genetic approachability, which could aid in shaping the future strategies that favor agro-ecosystem compatibility under unpredictable environmental conditions.


Asunto(s)
Ecosistema , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Estrés Fisiológico/fisiología , Plantas/genética , Agricultura
9.
Plant Genome ; 16(4): e20362, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37480222

RESUMEN

Plant nutrition is an important aspect that contributes significantly to sustainable agriculture, whereas minerals enrichment in edible source implies global human health; hence, both strategies need to be bridged to ensure "One Health" strategies. Abiotic stress-induced nutritional imbalance impairs plant growth. In this context, we discuss the molecular mechanisms related to the readjustment of nutrient pools for sustained plant growth under harsh conditions, and channeling the minerals to edible source (seeds) to address future nutritional security. This review particularly highlights interventions on (i) the physiological and molecular responses of mineral nutrients in crop plants under stressful environments; (ii) the deployment of breeding and biotechnological strategies for the optimization of nutrient acquisition, their transport, and distribution in plants under changing environments. Furthermore, the present review also infers the recent advancements in breeding and biotechnology-based biofortification approaches for nutrient enhancement in crop plants to optimize yield and grain mineral concentrations under control and stress-prone environments to address food and nutritional security.


Asunto(s)
Grano Comestible , Fitomejoramiento , Humanos , Minerales , Semillas , Nutrientes
10.
Plant Physiol Biochem ; 202: 107990, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37657298

RESUMEN

The plant growth regulator, jasmonic acid (JA) has emerged as important molecule and involved in key processes of plants. In this study, we investigated the role of methyl jasmonate (MeJA) in achieving tolerance mechanisms against arsenic (As) stress in rice (Oryza sativa). Arsenic toxicity is a major global concern that significantly deteriorate rice production. The application of MeJA (20 µM) and ethylene (150 µL L-1) both individually and/or in combination were found significant in protecting against As-induced toxicity in rice, and significantly improved defense systems. The study shown that the positive influence of MeJA in promoting carbohydrate metabolism, photosynthesis and growth under As stress were the result of its interplay with ethylene biosynthesis and reduced oxidative stress-mediated cellular injuries and cell deaths. Interestingly, the use of JA biosynthesis inhibitor, neomycin (Neo) and ethylene biosynthesis inhibitor, aminoethoxyvinylglycine (AVG) overturned the effects of MeJA and ethylene on plant growth under As stress. From the pooled data, it may also be concluded that Neo treatment to MeJA- treated rice plants restricted JA-mediated responses, implying that application of MeJA modulated ethylene- dependent pathways in response to As stress. Thus, the action of MeJA in As tolerance is found to be mediated by ethylene. The study will shed light on the mechanisms that could be used to ensure the sustainability of rice plants under As stress.


Asunto(s)
Arsénico , Oryza , Arsénico/toxicidad , Metabolismo de los Hidratos de Carbono , Homeostasis , Etilenos
11.
J Plant Physiol ; 289: 154096, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37776751

RESUMEN

This study presents an exploration of the efficacy of brassinosteroids (BRs) and ethylene in mediating heat stress tolerance in rice (Oryza sativa). Heat is one of the major abiotic factors that prominently deteriorates rice production by influencing photosynthetic efficiency, source‒sink capacity, and growth traits. The application of BR (0.5 mM) and ethylene (200 µl l-1) either individually and/or in combination was found to alleviate heat stress-induced toxicity by significantly improving photosynthesis, source‒sink capacity and defense systems; additionally, it reduced the levels of oxidative stress markers and ethylene formation. The study revealed the positive influence of BR in promoting plant growth responses under heat stress through its interplay with ethylene biosynthesis and enhanced plant defense systems. Interestingly, treatment with the ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG) substantiated that BR application to heat-stressed rice plants enhanced ethylene-dependent pathways to counteract the underlying adversities. Thus, BR action was found to be mediated by ethylene to promote heat tolerance in rice. The present study sheds light on the potential tolerance mechanisms which can ensure rice sustainability under heat stress conditions.

12.
Front Plant Sci ; 14: 1087946, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36909406

RESUMEN

In the current changing environment, salt stress has become a major concern for plant growth and food production worldwide. Understanding the mechanisms of how plants function in saline environments is critical for initiating efforts to mitigate the detrimental effects of salt stress. Agricultural productivity is linked to nutrient availability, and it is expected that the judicious metabolism of mineral nutrients has a positive impact on alleviating salt-induced losses in crop plants. Nitrogen (N) is a macronutrient that contributes significantly to sustainable agriculture by maintaining productivity and plant growth in both optimal and stressful environments. Significant progress has been made in comprehending the fundamental physiological and molecular mechanisms associated with N-mediated plant responses to salt stress. This review provided an (a) overview of N-sensing, transportation, and assimilation in plants; (b) assess the salt stress-mediated regulation of N dynamics and nitrogen use- efficiency; (c) critically appraise the role of N in plants exposed to salt stress. Furthermore, the existing but less explored crosstalk between N and phytohormones has been discussed that may be utilized to gain a better understanding of plant adaptive responses to salt stress. In addition, the shade of a small beam of light on the manipulation of N dynamics through genetic engineering with an aim of developing salt-tolerant plants is also highlighted.

13.
Plant Physiol Biochem ; 181: 1-11, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35421744

RESUMEN

The unfolded protein response (UPR) plays a significant role in the maintenance of cellular homeostasis under endoplasmic reticulum (ER) stress, which is highly dependent on the regulation of defense-related phytohormones. In this study, the role of ethylene (ET) in ER stress and UPR was investigated in the leaves of intact tomato (Solanum lycopersicum) plants. Exogenous application of the ET precursor 1-aminocyclopropane-1-carboxylic acid not only resulted in higher ET emission from leaves but also increased the expression of the UPR marker gene SlBiP and the transcript levels of the ER stress sensor SlIRE1, as well as the levels of SlbZIP60, after 24 h in tomato leaves. Using ET receptor Never ripe (Nr) mutants, a significant role of ET in tunicamycin (Tm)-induced ER stress sensing and signaling was confirmed based on the changes in the expression levels of SlIRE1b and SlBiP. Furthermore, the analysis of other defense-related phytohormones showed that the Tm-induced ET can affect positively the levels of and response to salicylic acid. Additionally, it was found that nitric oxide production and lipid peroxidation, as well as the electrolyte leakage induced by Tm, is regulated by ET, whereas the levels of H2O2 and proteolytic activity seemed to be independent of ET under ER stress in the leaves of tomato plants.


Asunto(s)
Solanum lycopersicum , Etilenos/metabolismo , Peróxido de Hidrógeno/metabolismo , Solanum lycopersicum/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Respuesta de Proteína Desplegada
14.
Chemosphere ; 287(Pt 2): 132142, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34826894

RESUMEN

Green synthesis of nanoparticles (NPs) is competent in inducing physiological responses in plants for combating the abiotic stresses. Considering this, salt stress is one of the most alarming conditions that exerts complex and polygenic impacts on morph-physiological functioning of plants; resulting in reduced crop productivity and yield. Therefore, understanding the salt responses and tolerance mechanisms are important for sustaining crop productivity. In the current study, we have examined the effects of biosynthesized gold nanoparticles (AuNPs) on wheat (Triticum aestivum) plants under salt stress. Green-synthesized AuNPs were found beneficial in modulating the K+/Na+ ratio, chlorophyll concentration, defense systems, nitrogen assimilation, stomatal dynamics and growth traits under salt stress condition. Furthermore, the excessive accumulation of oxidative stress markers including reactive oxygen/nitrogen species was controlled in response of AuNPs treatment under salt stress. Overall, modulation of these traits commanded to induce salt stress tolerance in wheat plants.


Asunto(s)
Nanopartículas del Metal , Triticum , Oro , Iones , Óxido Nítrico , Nitrógeno , Estrés Salino , Estrés Fisiológico
15.
Front Plant Sci ; 12: 741419, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721467

RESUMEN

Rice (Oryza sativa) is an imperative staple crop for nearly half of the world's population. Challenging environmental conditions encompassing abiotic and biotic stresses negatively impact the quality and yield of rice. To assure food supply for the unprecedented ever-growing world population, the improvement of rice as a crop is of utmost importance. In this era, "omics" techniques have been comprehensively utilized to decipher the regulatory mechanisms and cellular intricacies in rice. Advancements in omics technologies have provided a strong platform for the reliable exploration of genetic resources involved in rice trait development. Omics disciplines like genomics, transcriptomics, proteomics, and metabolomics have significantly contributed toward the achievement of desired improvements in rice under optimal and stressful environments. The present review recapitulates the basic and applied multi-omics technologies in providing new orchestration toward the improvement of rice desirable traits. The article also provides a catalog of current scenario of omics applications in comprehending this imperative crop in relation to yield enhancement and various environmental stresses. Further, the appropriate databases in the field of data science to analyze big data, and retrieve relevant information vis-à-vis rice trait improvement and stress management are described.

16.
Plant Physiol Biochem ; 167: 1011-1023, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34598021

RESUMEN

Salinity is one of the major constraints to plant growth and development across the globe that leads to the huge crop productivity loss. Salinity stress causes impairment in plant's metabolic and cellular processes including disruption in ionic homeostasis due to excess of sodium (Na+) ion influx and potassium (K+) efflux. This condition subsequently results in a significant reduction of the cytosolic K+ levels, eventually inhibiting plant growth attributes. K+ plays a crucial role in alleviating salinity stress by recasting key processes of plants. In addition, K+ acquisition and retention also serve as the perquisite trait to establish salt tolerant mechanism. In addition, an intricate network of genes and their regulatory elements are involved in coordinating salinity stress responses. Furthermore, plant growth regulators (PGRs) and other signalling molecules influence K+-mediated salinity tolerance in plants. Recently, nanoparticles (NPs) have also been found several implications in plants with respect to their roles in mediating K+ homoeostasis during salinity stress in plants. The present review describes salinity-induced adversities in plants and role of K+ in mitigating salinity-induced damages. The review also highlights the efficacy of PGRs and other signalling molecules in regulating K+ mediated salinity tolerance along with nano-technological perspective for improving K+ mediated salinity tolerance in plants.


Asunto(s)
Potasio , Plantas Tolerantes a la Sal , Salinidad , Tolerancia a la Sal , Sodio
17.
Plant Physiol Biochem ; 162: 36-47, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33667965

RESUMEN

Unfavorable environmental conditions are the critical inimical to the sustainable agriculture. Among various novel strategies designed to protect plants from abiotic stress threats, use of mineral elements as 'stress mitigators' has emerged as the most crucial and interesting aspect. Silicon (Si) is a quasi-essential nutrient that mediates plant growth and development and interacts with plant growth regulators (PGRs) and signaling molecules to combat abiotic stress induced adversities in plants and increase stress tolerance. PGRs are one of the most important chemical messengers that mediate plant growth and development during stressful conditions. However, the individual roles of Si and PGRs have extensively defined but their exquisite crosstalk with each other to mediate plant stress responses is still indiscernible. The present review is an upfront effort to delineate an intricate crosstalk/interaction between Si and PGRs to reduce abiotic stress adversities. The combined effects of interaction of Si with other signaling molecules such as reactive oxygen species (ROS), nitric oxide (NO) and calcium (Ca2+) for the survival of plants under stress and optimal conditions are also discussed.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Silicio , Desarrollo de la Planta , Plantas , Silicio/farmacología , Estrés Fisiológico
18.
Biomolecules ; 12(1)2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-35053191

RESUMEN

Heavy metal (HM) toxicity has become a global concern in recent years and is imposing a severe threat to the environment and human health. In the case of plants, a higher concentration of HMs, above a threshold, adversely affects cellular metabolism because of the generation of reactive oxygen species (ROS) which target the key biological molecules. Moreover, some of the HMs such as mercury and arsenic, among others, can directly alter the protein/enzyme activities by targeting their -SH group to further impede the cellular metabolism. Particularly, inhibition of photosynthesis has been reported under HM toxicity because HMs trigger the degradation of chlorophyll molecules by enhancing the chlorophyllase activity and by replacing the central Mg ion in the porphyrin ring which affects overall plant growth and yield. Consequently, plants utilize various strategies to mitigate the negative impact of HM toxicity by limiting the uptake of these HMs and their sequestration into the vacuoles with the help of various molecules including proteins such as phytochelatins, metallothionein, compatible solutes, and secondary metabolites. In this comprehensive review, we provided insights towards a wider aspect of HM toxicity, ranging from their negative impact on plant growth to the mechanisms employed by the plants to alleviate the HM toxicity and presented the molecular mechanism of HMs toxicity and sequestration in plants.


Asunto(s)
Metales Pesados , Humanos , Metalotioneína , Metales Pesados/metabolismo , Metales Pesados/toxicidad , Desarrollo de la Planta , Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
19.
Plant Physiol Biochem ; 164: 260-278, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34020167

RESUMEN

Heavy metal (HM) accumulation in the agricultural soil and its toxicity is a major threat for plant growth and development. HMs disrupt functional integrity of the plants, induces altered phenological and physiological responses and slashes down qualitative crop yield. Chemical messengers such as phytohormones, plant growth regulators and gasotransmitters play a crucial role in regulating plant growth and development under metal toxicity in plants. Understanding the intricate network of these chemical messengers as well as interactions of genes/metabolites/proteins associated with HM toxicity in plants is necessary for deciphering insights into the regulatory circuit involved in HM tolerance. The present review describes (a) the role of chemical messengers in HM-induced toxicity mitigation, (b) possible crosstalk between phytohormones and other signaling cascades involved in plants HM tolerance and (c) the recent advancements in biotechnological interventions including genetic engineering, genome editing and omics approaches to provide a step ahead in making of improved plant against HM toxicities.


Asunto(s)
Metales Pesados , Ingeniería Genética , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas , Plantas/genética
20.
J Biotechnol ; 325: 73-82, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-33189727

RESUMEN

Gamma-aminobutyric acid (GABA) is a newly recognized signaling molecule participating in physiological processes, growth, and development of plants under optimal and stressful environments. In the present reported research, we investigated the role of GABA in imparting salt stress tolerance in wheat (Triticum aestivum L.). Exposure of wheat plants to 100 mM NaCl resulted in increased oxidative stress, glucose content, nitric oxide (NO) production together with reduced growth and photosynthetic traits of plants. Contrarily, GABA application improved nitrogen (N) metabolism, sulfur (S) assimilation, ion homeostasis, growth and photosynthesis under salt stress. Additionally, GABA mitigated oxidative stress induced by salt stress with the increased ascorbate-glutathione cycle and proline metabolism. The study with NO inhibitor, c-PTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy-3-oxide] in GABA experiment suggested that the impact of GABA on improvement of growth and photosynthesis under salt stress was mediated by NO and influenced N and S assimilation and antioxidant systems. The results suggested that the GABA has a significant potential in reversing the salt stress response in wheat plants, and GABA-mediated signals are manifested through NO.


Asunto(s)
Antioxidantes , Triticum , Nitrógeno , Estrés Oxidativo , Fotosíntesis , Estrés Fisiológico , Azufre , Ácido gamma-Aminobutírico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA