Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Funct Integr Genomics ; 23(2): 167, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37204621

RESUMEN

Food plants play a crucial role in human survival, providing them essential nutrients. However, traditional breeding methods have not been able to keep up with the demands of the growing population. The improvement of food plants aims to increase yield, quality, and resistance to biotic and abiotic stresses. With CRISPR/Cas9, researchers can identify and edit key genes conferring desirable qualities in agricultural plants, including increased yield, enhanced product quality attributes, and increased tolerance to biotic and abiotic challenges. These modifications have enabled the creation of "smart crops" that exhibit rapid climatic adaptation, resistance to extreme weather conditions and high yield and quality. The use of CRISPR/Cas9 combined with viral vectors or growth regulators has made it possible to produce more efficient modified plants with certain conventional breeding methods. However, ethical and regulatory aspects of this technology must be carefully considered. Proper regulation and application of genome editing technology can bring immense benefits to agriculture and food security. This article provides an overview of genetically modified genes and conventional as well as emerging tools, including CRISPR/Cas9, that have been utilized to enhance the quality of plants/fruits and their products. The review also discusses the challenges and prospects associated with these techniques.


Asunto(s)
Sistemas CRISPR-Cas , Fitomejoramiento , Humanos , Plantas Modificadas Genéticamente/genética , Fitomejoramiento/métodos , Edición Génica/métodos , Productos Agrícolas/genética , Agricultura , Genoma de Planta
2.
Int J Phytoremediation ; 24(10): 1025-1038, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34705569

RESUMEN

Water deficiency represents the major cause that affects agricultural output globally. A water-saving strategy was introduced by using water deficit conditions and growth regulators. Foliar application of folic acid (FA) has been found suitable not only for drought stress alleviation in Coriandrum. sativum but also beneficial for improvement in growth and yield under water deficit circumstances. The current study examined the potential roles of FA under drought to improve C. sativum growth. The C. sativum variety was subjected to three levels of irrigation regimes (IR100, IR75, and IR50) with or without the foliar application of FA concentrations. The results showed that the application of 50 mM FA was very effective in improving the plant height, number of secondary branches, number of umbels, and leaf area index in comparison to FA water deficit treated plants alone under IR75 and IR50. Similarly, physiological and gaseous exchange parameters also upgraded that improved the economic yield (81 and 163%), fresh biomass (28 and 131%), dry biomass (63 and 66%), and harvest index (10 and 58%) of C. sativum plants under irrigation regimes IR75 and IR50 compared to their non-treated FA plants. All the observed growth parameters showed a positive correlation with each other vs. LAI except a weight of 1,000. Overall, this study indicated that foliar-applied 50 mM FA may be used as an alternate strategy to improve C. sativum performance in biomass production and can play a key part in solving difficulties caused by drought stress on plant development.


Folic acid is a convenient, affordable growth regulator to increase the efficiency of plants and preserve their nutrients. As far as abiotic stress alleviation is concerned, we have not found sufficient literature explaining the possible role of folic acid in the reduction of water-deficit stress in plants. The role of folic acid in the orchestration of metabolic activities in Coriandrum sativum L. under water deficit conditions has never been documented. This study will open new avenues discussing the role of FA in the enhancement of crop production in drought conditions.


Asunto(s)
Coriandrum , Biodegradación Ambiental , Biomasa , Ácido Fólico , Fotosíntesis , Hojas de la Planta , Estrés Fisiológico , Agua
3.
Acta Pol Pharm ; 71(1): 3-10, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24779189

RESUMEN

Human civilization is facing the problem of kidney stones since ancient ages. Although mortality rate is not so high, yet it affects the victim's quality of life. The patient suffers from intense pain and many other symptoms modifying his life style and affecting his socioeconomic status. Many drugs and invasive methods have also been developed for the treatment, but these are highly costly and unaffordable for poor people and the rate of reoccurrence is also high. The use of medicinal plants is both affordable and effective in this respect. In this article, 35 medicinal plants of Pakistan origin and their crucial information have been enumerated in alphabetical order of plant's scientific name, family, place (distribution), part used, local name, habit, major constituents and references. It can also be seen that all parts are used for the treatment of kidney stones. Leaves represent 28% contribution, whole plants and seeds 12%, fruits and roots 11% contribution in this respect. Flowers contribute 8% in the treatment of kidney stone while branches, bark, bushes, buds, milk and shoots contribute only 3% in the removal of kidney stones. Habits of plants were also taken under consideration. It was noticed that herbs are the most useful life form in this regard which contributed 63% for the removal of kidney stone. Shrubs contributed 20%, trees 11% while bushes and weeds contributed 3% for the removal of kidney stones.


Asunto(s)
Etnobotánica , Cálculos Renales/tratamiento farmacológico , Fitoterapia , Plantas Medicinales , Humanos , Pakistán
4.
Sci Rep ; 13(1): 18048, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872286

RESUMEN

Nanotechnology is one of the fastest-growing markets, but developing eco-friendly products, their maximum production, stability, and higher yield is a challenge. In this study, silver nanoparticles were synthesized using an easily available resource, leaves extract of the Neem (Azadirachta indica) plant, as a reducing and capping agent, determined their effect on germination and growth of tomato plants. The maximum production of silver nanoparticles was noted at 70 °C after 3 h of reaction time while treating the 10 ml leaf extract of Neem plant with 10 ml of 1 mM silver nitrate. The impact of the extract preparation method and solvent type on the plant mediated fabrication of silver nanoparticles was also investigated. The UV-spectrophotometric analysis confirmed the synthesis of silver nanoparticles and showed an absorption spectrum within Δ420-440 nm range. The size of the fabricated silver nanoparticles was 22-30 nm. The functional groups such as ethylene, amide, carbonyl, methoxy, alcohol, and phenol attached to stabilize the nanoparticles were observed using the FTIR technique. SEM, EDX, and XRD analyses were performed to study the physiochemical characteristics of synthesized nanoparticles. Silver nanoparticles increased the germination rate of tomato seeds up to 70% while decreasing the mean germination time compared to the control. Silver nanoparticles applied at varying concentrations significantly increased the shoot length (25 to 80%), root length (10 to 60%), and fresh biomass (10 to 80%) biomass of the tomato plant. The production of total chlorophyll, carotenoid, flavonoids, soluble sugar, and protein was significantly increased in tomato plants treated with 5 and 10 ppm silver nanoparticles compared to the control. Green synthesized silver nanoparticles are cost-effective and nontoxic and can be applied in agriculture, biomedical, and other fields.


Asunto(s)
Azadirachta , Nanopartículas del Metal , Solanum lycopersicum , Extractos Vegetales/farmacología , Plata , Espectroscopía Infrarroja por Transformada de Fourier , Hojas de la Planta
5.
Microorganisms ; 11(4)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37110309

RESUMEN

Tomato plants are among the most widely cultivated and economically important crops worldwide. Farmers' major challenge when growing tomatoes is early blight disease caused by Alternaria solani, which results in significant yield losses. Silver nanoparticles (AgNPs) have gained popularity recently due to their potential antifungal activity. The present study investigated the potential of green synthesized silver nanoparticles (AgNPs) for enhancing the growth and yield of tomato plants and their resistance against early blight disease. AgNPs were synthesized using leaf extract of the neem tree. Tomato plants treated with AgNPs showed a significant increase in plant height (30%), number of leaves, fresh weight (45%), and dry weight (40%) compared to the control plants. Moreover, the AgNP-treated plants exhibited a significant reduction in disease severity index (DSI) (73%) and disease incidence (DI) (69%) compared to the control plants. Tomato plants treated with 5 and 10 ppm AgNPs reached their maximum levels of photosynthetic pigments and increased the accumulation of certain secondary metabolites compared to the control group. AgNP treatment improved stress tolerance in tomato plants as indicated by higher activities of antioxidant enzymes such as PO (60%), PPO (65%), PAL (65.5%), SOD (65.3%), CAT (53.8%), and APX (73%). These results suggest that using green synthesized AgNPs is a promising approach for enhancing the growth and yield of tomato plants and protecting them against early blight disease. Overall, the findings demonstrate the potential of nanotechnology-based solutions for sustainable agriculture and food security.

6.
PLoS One ; 17(4): e0264476, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35482796

RESUMEN

Antibiotics released into agricultural fields through the manure of grazing animals could exert harmful impacts on soil microbes and plants. Antibiotics exert high impacts on environment than other pharmaceuticals due to their higher biological activity. However, little is known about their impacts on plants, despite indications that antibiotics exert negative effects on soil microorganisms, which ultimately harm the plants. It has been demonstrated that beneficial microorganisms promote plant growth and development under various stresses. This study evaluated the toxicity of four newly derived sulfonamides (SAs), i.e., 2-(phenylsulfonyl) hydrazine carbothioamide (TSBS-1), N, 2-bis phenyl hydrazine carbothioamide (TSBS-2), aminocarbonyl benzene sulfonamide (UBS-1), and N, N'-carbonyl dibenzene sulfonamide (UBS-2) on bacterial growth and soil microbial respiration. Each SA was tested at four different concentrations (i.e., 2.25, 2.5, 3, 4 mg/ml) against five rhizospheric bacterial strains, including AC (Actinobacteria sp.), RS-3a (Bacillus sp.), RS-7a (Bacillus subtilis), RS-4a (Enterobacter sp.), and RS-5a (Enterobacter sp.). Antimicrobial activity was checked by disc diffusion method, which showed that inhibition zone increased with increasing concentration of SAs. The UBS-1 resulted in the highest inhibition zone (11.47 ± 0.90 mm) against RS-4a with the highest concentration (4 mg/ml). Except TSBS-1, all sulfonamide derivatives reduced CO2 respiration rates in soil. Soil respiration values significantly increased till 6th day; however, exposure of sulfonamide derivatives suppressed microbial respiration after 6th day. On the 20th day, poor respiration activity was noted at 0.23, 0.2, and 0.4 (CO2 mg/g dry soil) for TSBS-1, UBS-1, and UBS-2, respectively. Our results demonstrate that sulfonamides, even in small concentrations, significantly affect soil microbial population and respiration. Soil microbial respiration changes mediated by sulfonamides were dependent on length of exposure and concentration. It is recommended that antibiotics should be carefully watched and their impact on plant growth should be tested in the future studies.


Asunto(s)
Suelo , Triticum , Animales , Antibacterianos/farmacología , Bacterias , Dióxido de Carbono/farmacología , Hidrazinas/farmacología , Plantas , Respiración , Microbiología del Suelo , Sulfonamidas/farmacología
7.
Front Plant Sci ; 13: 1079283, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36714745

RESUMEN

Abiotic stress, particularly drought, will remain an alarming challenge for sustainable agriculture. New approaches have been opted, such as nanoparticles (NPs), to reduce the negative impact of drought stress and lessen the use of synthetic fertilizers and pesticides that are an inevitable problem these days. The application of zinc oxide nanoparticles (ZnO NPs) has been recognized as an effective strategy to enhance plant growth and crop production during abiotic stress. The aim of the current study was to investigate the role of ZnO NPs in drought stress management of drought-susceptible Coriandrum sativum L. (C. sativum) in two consecutive seasons. Drought regimes (moderate drought regime-MDR and intensive drought regime-IDR) were developed based on replenishment method with respect to 50% field capacity of fully irrigated (control) plants. The results showed that foliar application of 100 ppm ZnO NPs improved the net photosynthesis (Pn), stomatal conductance (C), and transpiration rate (E) and boosted up the photosynthetic capacity associated with photosynthetic active radiation in MDR. Similarly, 48% to 30% improvement of chlorophyll b content was observed in MDR and onefold to 41% in IDR during both seasons in ZnO NP-supplemented plants. The amount of abscisic acid in leaves showed a decreasing trend in MDR and IDR in the first season (40% and 30%) and the second season (49% and 33%) compared with untreated ZnO NP plants. The ZnO NP-treated plants showed an increment in total soluble sugars, total phenolic content, and total flavonoid content in both drought regimes, whereas the abaxial surface showed high stomatal density and stomatal index than the adaxial surface in foliar-supplied NP plants. Furthermore, ZnO NPs improve the magnitude of stomata ultrastructures like stomatal length, stomatal width, and pore length for better adaptation against drought. Principal component analysis revealed the efficacy of ZnO NPs in inducing drought tolerance in moderate and intensive stress regimes. These results suggest that 100 ppm ZnO NPs can be used to ameliorate drought tolerance in C. sativum plants.

8.
Front Plant Sci ; 13: 1005710, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36340333

RESUMEN

Drought is one of the major environmental limitations in the crop production sector that has a great impact on food security worldwide. Coriander (Coriandrum sativum L.) is an herbaceous angiosperm of culinary significance and highly susceptible to rootzone dryness. Elucidating the drought-induced physio-chemical changes and the foliar-applied folic acid (FA; vitamin B9)-mediated stress tolerance mechanism of coriander has been found as a research hotspot under the progressing water scarcity challenges for agriculture. The significance of folic acid in ameliorating biochemical activities for the improved vegetative growth and performance of coriander under the mild stress (MS75), severe stress (SS50), and unstressed (US100) conditions was examined in this study during two consecutive seasons. The results revealed that the plants treated with 50 mM FA showed the highest plant fresh biomass, leaf fresh biomass, and shoot fresh biomass from bolting stage to seed filling stage under mild drought stress. In addition, total soluble sugars, total flavonoids content, and chlorophyll content showed significant results by the foliar application of FA, while total phenolic content showed non-significant results under MS75 and SS50. It was found that 50 mM of FA upregulated the activity of catalase, superoxide dismutase, and ascorbate peroxidase enzymes in MS75 and SS50 plants compared with untreated FA plants. Thus, FA treatment improved the overall biological yield and economic yield regardless of water deficit conditions. FA-accompanied plants showed a decline in drought susceptibility index, while it improved the drought tolerance efficiency, indicating this variety to become stress tolerant. The optimum harvest index, essential oil (EO) percentage, and oil yield were found in MS75 followed by SS50 in FA-supplemented plants. The gas chromatography-mass spectrometry analysis revealed a higher abundance of linalool as the major chemical constituent of EO, followed by α-terpeniol, terpinene, and p-Cymene in FA-treated SS50 plants. FA can be chosen as a shotgun tactic to improve drought tolerance in coriander by delimiting the drastic changes due to drought stress.

9.
Front Plant Sci ; 13: 961680, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388543

RESUMEN

The present study investigated the brassinosteroid-induced drought resistance of contrasting drought-responsive maize genotypes at physiological and transcriptomic levels. The brassinosteroid (BR) contents along with different morphology characteristics, viz., plant height (PH), shoot dry weight (SDW), root dry weight (RDW), number of leaves (NL), the specific mass of the fourth leaf, and antioxidant activities, were investigated in two maize lines that differed in their degree of drought tolerance. In response to either control, drought, or brassinosteroid treatments, the KEGG enrichment analysis showed that plant hormonal signal transduction and starch and sucrose metabolism were augmented in both lines. In contrast, the phenylpropanoid biosynthesis was augmented in lines H21L0R1 and 478. Our results demonstrate drought-responsive molecular mechanisms and provide valuable information regarding candidate gene resources for drought improvement in maize crop. The differences observed for BR content among the maize lines were correlated with their degree of drought tolerance, as the highly tolerant genotype showed higher BR content under drought stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA