Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mod Pathol ; 37(4): 100454, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417627

RESUMEN

Atypical spindle cell/pleomorphic lipomatous tumor (ASPLT) is a recently described adipocytic tumor predominantly affecting the subcutaneous soft tissues of adults. Previous studies have shown that ASPLT follows a benign clinical course with a 4% to 12% local recurrence rate and no risk of dedifferentiation. Herein, we describe the clinicopathologic and molecular findings of 4 cases of ASPLT showing unequivocal sarcomatous transformation. Three patients were male and one was female, aged 65, 70, 74, and 78 years. Two cases presented as mass-forming lesions, while 1 case was incidentally discovered. The tumors measured 30, 55, 80, and 110 mm and occurred in the chest wall (n = 2) or arm (n = 2); all were subcutaneous. Microscopically, they showed a biphasic appearance comprising a low-grade ASPLT component and a high-grade sarcomatous component. The low-grade components showed features in the spectrum of either atypical pleomorphic lipomatous tumor (n = 2) or atypical spindle cell lipomatous tumor (n = 2). The high-grade components displayed leiomyosarcoma-like (n = 2), pleomorphic liposarcoma-like (n = 1) or undifferentiated sarcoma-like (n = 1) morphology. On immunohistochemistry, tumors were negative for MDM2 and showed loss of RB1 expression. In addition, the leiomyosarcoma-like areas seen in 2 cases were positive for smooth muscle actin and H-caldesmon. Single-nucleotide polymorphism array, performed in 3 cases, showed deletions of TP53, RB1, and flanking genes in both components. In contrast, the sarcomatous components showed more complex genomic profiles with rare segmental gains and recurrent loss of PTEN (n = 3), ATM (n = 2), and CDKN2A/B (n = 2) among other genes. Whole exome sequencing identified a TP53 variant in one case and an ATRX variant in another, each occurring in both tumor components. Limited clinical follow-up showed no recurrence or metastasis after 1 to 13 months (median, 7.5 months) postsurgical excision. Altogether, our data support that ASPLT can rarely develop sarcomatous transformation and offer insights into the molecular mechanisms underlying this event.


Asunto(s)
Leiomiosarcoma , Lipoma , Liposarcoma , Sarcoma , Neoplasias de los Tejidos Blandos , Adulto , Humanos , Masculino , Femenino , Biomarcadores de Tumor/análisis , Liposarcoma/genética , Liposarcoma/patología , Sarcoma/genética , Lipoma/patología , Neoplasias de los Tejidos Blandos/genética , Neoplasias de los Tejidos Blandos/patología
2.
J Cutan Pathol ; 51(8): 576-582, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38666479

RESUMEN

Melanoma's rare capacity to undergo heterologous differentiation can create significant diagnostic challenges. The molecular mechanisms underlying this phenomenon are not well understood. We present an unusual case of subungual melanoma exhibiting extensive cartilaginous differentiation and provide insights into its molecular and cytogenomic features. Histopathologically, the tumor was predominantly composed of nodules of malignant cartilage in association with a smaller population of nested epithelioid to rhabdoid cells. Immunohistochemically, the tumor cells in both components were positive for S100, SOX10, and PRAME, and were negative for Melan-A and HMB-45. Molecular analysis by whole exome DNA sequence did not detect any pathogenic variants in genes commonly implicated in melanoma. Additional analysis by SNP chromosomal microarray revealed a complex genome characterized by numerous chromosomal losses and gains, including a homozygous deletion of the CDKN2A locus and a heterozygous deletion of the locus containing EXT2, a tumor suppressor implicated in hereditary multiple osteochondromas and secondary chondrosarcomas. This case underscores the importance of recognizing cartilaginous differentiation as a rare manifestation of melanoma, particularly at subungual sites, and suggests that at least some of these melanomas may be driven by non-canonical molecular pathways.


Asunto(s)
Melanoma , Enfermedades de la Uña , Neoplasias Cutáneas , Humanos , Melanoma/patología , Melanoma/genética , Melanoma/diagnóstico , Melanoma/metabolismo , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Enfermedades de la Uña/patología , Enfermedades de la Uña/genética , Enfermedades de la Uña/metabolismo , Diferenciación Celular , Masculino , Cartílago/patología , Cartílago/metabolismo , Femenino , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Proteínas S100/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Antígenos de Neoplasias
3.
Clin Chem ; 68(1): 172-180, 2021 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-34718481

RESUMEN

BACKGROUND: The ability to control the spread of COVID-19 continues to be hampered by a lack of rapid, scalable, and easily deployable diagnostic solutions. METHODS: We developed a diagnostic method based on CRISPR (clustered regularly interspaced short palindromic repeats) that can deliver sensitive, specific, and high-throughput detection of Sudden Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2). The assay utilizes SHERLOCK (Specific High-sensitivity Enzymatic Reporter unLOCKing) for the qualitative detection of SARS-CoV-2 RNA and may be performed directly on a swab or saliva sample without nucleic acid extraction. The assay uses a 384-well format and provides results in <1 hour. RESULTS: Assay performance was evaluated with 105 (55 negative, 50 positive) remnant SARS-CoV-2 specimens previously tested using Food and Drug Administration emergency use authorized assays and retested with a modified version of the Centers for Disease Control and Prevention (CDC) quantitative PCR with reverse transcription (RT-qPCR) assay. When combined with magnetic bead-based extraction, the high-throughput SHERLOCK SARS-CoV-2 assay was 100% concordant (n = 60) with the CDC RT-qPCR. When used with direct sample addition the high-throughput assay was also 100% concordant with the CDC RT-qPCR direct method (n = 45). With direct saliva sample addition, the negative and positive percentage agreements were 100% (15/15, 95% CI: 81.8-100%) and 88% (15/17, 95% CI: 63.6-98.5%), respectively, compared with results from a collaborating clinical laboratory. CONCLUSIONS: This high-throughput assay identifies SARS-CoV-2 from patient samples with or without nucleic acid extraction with high concordance to RT-qPCR methods. This test enables high complexity laboratories to rapidly increase their testing capacities with simple equipment.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19 , Sistemas CRISPR-Cas , COVID-19/diagnóstico , Ensayos Analíticos de Alto Rendimiento , Humanos , ARN Viral/aislamiento & purificación , SARS-CoV-2/aislamiento & purificación , Sensibilidad y Especificidad
4.
Am J Med Genet A ; 182(5): 1263-1267, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32134193

RESUMEN

Congenital heart defects (CHDs) are caused by a disruption in heart morphogenesis, which is dependent, in part, on a network of transcription factors (TFs) that regulate myocardial development. Heterozygous sequence variants in the basic helix-loop-helix TF gene heart and neural crest derivatives expressed 2 (HAND2) have been reported among some patients with CHDs; however, HAND2 has not yet been established as a Mendelian disease gene. We report a 31-month-old male with unicommissural unicuspid aortic valve, moderate aortic stenosis, and mild pulmonic stenosis. Chromosome analysis revealed a normal 46,XY karyotype, and a CHD sequencing panel was negative for pathogenic variants in NKX2.5, GATA4, TBX5, and CHD7. However, chromosomal microarray (CMA) testing identified a heterozygous 546.0-kb deletion on chromosome 4q34.1 (174364195_174910239[GRCh37/hg19]) that included exons 1 and 2 of SCRG1, HAND2, and HAND2-AS1. Familial CMA testing determined that the deletion was paternally inherited, which supported a likely pathogenic classification as the proband's father had previously undergone surgery for Tetralogy of Fallot. The family history was also notable for a paternal uncle who had previously died from complications related to an unknown heart defect. Taken together, this first report of a HAND2 and HAND2-AS1 deletion in a family with CHDs strongly supports haploinsufficiency of HAND2 as an autosomal dominant cause of CHD.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cardiopatías Congénitas/genética , Proteínas del Tejido Nervioso/genética , ARN Largo no Codificante/genética , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Estenosis de la Válvula Aórtica/genética , Estenosis de la Válvula Aórtica/fisiopatología , Preescolar , Eliminación de Gen , Haploinsuficiencia/genética , Corazón/crecimiento & desarrollo , Corazón/fisiopatología , Cardiopatías Congénitas/diagnóstico por imagen , Cardiopatías Congénitas/fisiopatología , Humanos , Masculino , Cresta Neural/crecimiento & desarrollo , Cresta Neural/patología , Estenosis de la Válvula Pulmonar/diagnóstico por imagen , Estenosis de la Válvula Pulmonar/genética , Estenosis de la Válvula Pulmonar/fisiopatología
5.
Am J Clin Pathol ; 160(2): 194-199, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37086490

RESUMEN

OBJECTIVES: The HLA-DQA1*05 variant (rs2097432) is associated with increased risk of immunogenicity to tumor necrosis factor antagonists, with subsequent resistance to therapy in patients with inflammatory bowel disease. Identification of these patients would optimize personalized therapeutic selection. METHODS: Genomic DNA was extracted from 80 deidentified samples in an unselected patient population with an unknown rs2097432 genotype. Split sample analysis was performed using a reference laboratory. Primer probes for a TaqMan quantitative polymerase chain reaction (qPCR) assay (Thermo Fisher Scientific) were custom designed. Synthesized genomic-block fragments were used as controls. All qPCR reactions were performed using a TaqMan GTXpress Master Mix (Thermo Fisher Scientific) on the Applied Biosystems 7500 system under fast cycling conditions. RESULTS: Of 80 samples, 50% were wild-type reference genotypes, 22.5% were heterozygous, and 27.5% were homozygous variant calls, comparable to population data. Split analysis samples between 2 independent laboratories were 100% concordant. The detection limit tested across genomic-block controls processed in duplicate was reproducible on sample input from 10 ng titrated down to 1.25 ng across 2 independent runs. Further, analytical specificity assessed with previous wild-type reference and homozygous variant DNA spiked into genomic-block controls produced appropriate heterozygous genotypes. CONCLUSIONS: Here we present validation of a lab-developed test for a rapid HLA-DQA1*05 (rs2097432) pharmacogenomics assay targeting a hotspot identified by genome-wide association studies. Targeted genotyping employed here will allow for expeditious personalized therapeutic selection.


Asunto(s)
Antígenos HLA-DQ , Enfermedades Inflamatorias del Intestino , Humanos , Antígenos HLA-DQ/genética , Farmacogenética , Estudio de Asociación del Genoma Completo , Genotipo , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/genética , Alelos , Necrosis/genética
7.
J Clin Virol ; 145: 105019, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34753073

RESUMEN

BACKGROUND: The well-recognized genome editing ability of the CRISPR-Cas system has triggered significant advances in CRISPR diagnostics. This has prompted an interest in developing new biosensing applications for nucleic acid detection. Recently, such applications have been engineered for detection of SARS-CoV-2. Increased demand for testing and consumables of RT-PCR assays has led to the use of alternate testing options. Here we evaluate the accuracy and performance of a novel fluorescence-based assay that received EUA authorization for detecting SARS-CoV-2 in clinical samples. METHODS: The Specific High-Sensitivity Enzymatic Reporter UnLOCKing (SHERLOCK) technology forms the basis of the Sherlock CRISPR SARS-CoV-2 kit using the CRISPR-Cas13a system. Our experimental strategy included selection of COVID-19 patient samples from previously validated RT-PCR assays. Positive samples were selected based on a broad range of cycle thresholds. RESULTS: A total of 60 COVID-19 patient samples were correctly diagnosed with 100% detection accuracy (relative fluorescence ratios: N gene 95% CI 29.9-43.8, ORF1ab gene 95% CI 30.1-46.3). All controls, including RNase P, showed expected findings. Overall ratios were robustly distinct between positive and negative cases relative to the pre-established 5-fold change in fluorescence. CONCLUSIONS: We have evaluated the accuracy of detecting conserved targets of SARS-CoV-2 across a range of viral loads, including low titers, using SHERLOCK CRISPR collateral detection in a clinical setting. These findings demonstrate encouraging results, at a time when COVID-19 clinical diagnosis and screening protocols remain in demand; especially as new variants emerge and vaccine mandates evolve. This approach highlights new thinking in infectious disease identification and can be expanded to measure nucleic acids in other clinical isolates.


Asunto(s)
COVID-19 , SARS-CoV-2 , Sistemas CRISPR-Cas , Humanos , Técnicas de Amplificación de Ácido Nucleico , ARN Viral , Sensibilidad y Especificidad
8.
Artículo en Inglés | MEDLINE | ID: mdl-34117072

RESUMEN

The ETS2 repressor factor (ERF) is a transcription factor in the RAS-MEK-ERK signal transduction cascade that regulates cell proliferation and differentiation, and pathogenic sequence variants in the ERF gene cause variable craniosynostosis inherited in an autosomal dominant pattern. The reported ERF variants are largely loss-of-function, implying haploinsufficiency as a primary disease mechanism; however, ERF gene deletions have not been reported previously. Here we describe three probands with macrocephaly, craniofacial dysmorphology, and global developmental delay. Clinical genetic testing for fragile X and other relevant sequencing panels were negative; however, chromosomal microarray identified heterozygous deletions (63.7-583.2 kb) on Chromosome 19q13.2 in each proband that together included five genes associated with Mendelian diseases (ATP1A3, ERF, CIC, MEGF8, and LIPE). Parental testing indicated that the aberrations were apparently de novo in two of the probands and were inherited in the one proband with the smallest deletion. Deletion of ERF is consistent with the reported loss-of-function ERF variants, prompting clinical copy-number-variant classifications of likely pathogenic. Moreover, the recent characterization of heterozygous loss-of-function CIC sequence variants as a cause of intellectual disability and neurodevelopmental disorders inherited in an autosomal dominant pattern is also consistent with the developmental delays and intellectual disabilities identified among the two probands with CIC deletions. Taken together, this case series adds to the previously reported patients with ERF and/or CIC sequence variants and supports haploinsufficiency of both genes as a mechanism for a variable syndromic cranial phenotype with developmental delays and intellectual disability inherited in an autosomal dominant pattern.


Asunto(s)
Eliminación de Gen , Predisposición Genética a la Enfermedad/genética , Proteínas Represoras/genética , Cráneo/anomalías , Cráneo/crecimiento & desarrollo , Adolescente , Niño , Preescolar , Variaciones en el Número de Copia de ADN , Discapacidades del Desarrollo/genética , Femenino , Estudios de Asociación Genética , Pruebas Genéticas , Heterocigoto , Humanos , Discapacidad Intelectual/genética , Masculino , Proteínas de la Membrana/genética , Trastornos del Neurodesarrollo/genética , Fenotipo , Proteína Proto-Oncogénica c-ets-2/genética , Cráneo/patología , ATPasa Intercambiadora de Sodio-Potasio/genética , Factores de Transcripción/genética
9.
BMC Med Genomics ; 12(1): 51, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30885185

RESUMEN

BACKGROUND: The chromosome 3q29 microdeletion syndrome is characterized by a clinical phenotype that includes behavioral features consistent with autism and attention deficit hyperactivity disorder, mild to moderate developmental delay, language-based learning disabilities, and/or dysmorphic features. In addition, recent data suggest that adults with chromosome 3q29 microdeletions have a significantly increased risk for psychosis and neuropsychiatric phenotypes. CASE PRESENTATION: We report a 3-year-old male with global developmental delay, anemia, and mild dysmorphic facial features. Clinical chromosomal microarray (CMA) testing of the proband detected a heterozygous 1.21 Mb deletion at chromosome 3q29, consistent with a diagnosis of the 3q29 microdeletion syndrome. Interestingly, subsequent parental testing determined that the pathogenic deletion was inherited from his otherwise healthy mother who had a history of learning disabilities. The chromosome 3q29 microdeletion was not detected in the healthy older sibling of the proband by CMA testing, nor was it prenatally detected in a subsequent maternal pregnancy. CONCLUSION: Our report highlights the 3q29 microdeletion syndrome as an illustrative example of the importance of a molecular diagnosis for families that harbor pathogenic copy number aberrations with variable expressivity, in particular those that also impart an increased risk for adult onset neuropsychiatric phenotypes.


Asunto(s)
Discapacidad Intelectual/genética , Linaje , Preescolar , Deleción Cromosómica , Cromosomas Humanos Par 3/genética , Variaciones en el Número de Copia de ADN , Discapacidades del Desarrollo/complicaciones , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Discapacidades del Desarrollo/fisiopatología , Femenino , Humanos , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/patología , Discapacidad Intelectual/fisiopatología , Masculino , Riesgo
12.
NPJ Genom Med ; 3: 3, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29367880

RESUMEN

Bardet-Biedl syndrome (BBS) is a recessive disorder characterized by heterogeneous clinical manifestations, including truncal obesity, rod-cone dystrophy, renal anomalies, postaxial polydactyly, and variable developmental delays. At least 20 genes have been implicated in BBS, and all are involved in primary cilia function. We report a 1-year-old male child from Guyana with obesity, postaxial polydactyly on his right foot, hypotonia, ophthalmologic abnormalities, and developmental delay, which together indicated a clinical diagnosis of BBS. Clinical chromosomal microarray (CMA) testing and high-throughput BBS gene panel sequencing detected a homozygous 7p14.3 deletion of exons 1-4 of BBS9 that was encompassed by a 17.5 Mb region of homozygosity at chromosome 7p14.2-p21.1. The precise breakpoints of the deletion were delineated to a 72.8 kb region in the proband and carrier parents by third-generation long-read single molecule real-time (SMRT) sequencing (Pacific Biosciences), which suggested non-homologous end joining as a likely mechanism of formation. Long-read SMRT sequencing of the deletion breakpoints also determined that the aberration included the neighboring RP9 gene implicated in retinitis pigmentosa; however, the clinical significance of this was considered uncertain given the paucity of reported cases with unambiguous RP9 mutations. Taken together, our study characterized a BBS9 deletion, and the identification of this shared haplotype in the parents suggests that this pathogenic aberration may be a BBS founder mutation in the Guyanese population. Importantly, this informative case also highlights the utility of long-read SMRT sequencing to map nucleotide breakpoints of clinically relevant structural variants.

15.
Mol Cytogenet ; 8: 65, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26273322

RESUMEN

BACKGROUND: Chromatin-modifying reagents that alter histone associating proteins, DNA conformation or its sequence are well established strategies for studying chromatin structure in interphase (G1, S, G2). Little is known about how these compounds act during metaphase. We assessed the effects of these reagents at genomic loci that show reproducible, non-random differences in accessibility to chromatin that distinguish homologous targets by single copy DNA probe fluorescence in situ hybridization (scFISH). By super-resolution 3-D structured illumination microscopy (3D-SIM) and other criteria, the differences correspond to 'differential accessibility' (DA) to these chromosomal regions. At these chromosomal loci, DA of the same homologous chromosome is stable and epigenetic hallmarks of less accessible interphase chromatin are present. RESULTS: To understand the basis for DA, we investigate the impact of epigenetic modifiers on these allelic differences in chromatin accessibility between metaphase homologs in lymphoblastoid cell lines. Allelic differences in metaphase chromosome accessibility represent a stable chromatin mark on mitotic metaphase chromosomes. Inhibition of the topoisomerase IIα-DNA cleavage complex reversed DA. Inter-homolog probe fluorescence intensity ratios between chromosomes treated with ICRF-193 were significantly lower than untreated controls. 3D-SIM demonstrated that differences in hybridized probe volume and depth between allelic targets were equalized by this treatment. By contrast, DA was impervious to chromosome decondensation treatments targeting histone modifying enzymes, cytosine methylation, as well as in cells with regulatory defects in chromatid cohesion. These data altogether suggest that DA is a reflection of allelic differences in metaphase chromosome compaction, dictated by the localized catenation state of the chromosome, rather than by other epigenetic marks. CONCLUSIONS: Inhibition of the topoisomerase IIα-DNA cleavage complex mitigated DA by decreasing DNA superhelicity and axial metaphase chromosome condensation. This has potential implications for the mechanism of preservation of cellular phenotypes that enables the same chromatin structure to be correctly reestablished in progeny cells of the same tissue or individual.

16.
Mol Cytogenet ; 7(1): 70, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25520753

RESUMEN

BACKGROUND: Condensation differences along the lengths of homologous, mitotic metaphase chromosomes are well known. This study reports molecular cytogenetic data showing quantifiable localized differences in condensation between homologs that are related to differences in accessibility (DA) of associated DNA probe targets. Reproducible DA was observed for ~10% of locus-specific, short (1.5-5 kb) single copy DNA probes used in fluorescence in situ hybridization. RESULTS: Fourteen probes (from chromosomes 1, 5, 9, 11, 15, 17, 22) targeting genic and intergenic regions were developed and hybridized to cells from 10 individuals with cytogenetically-distinguishable homologs. Differences in hybridization between homologs were non-random for 8 genomic regions (RGS7, CACNA1B, GABRA5, SNRPN, HERC2, PMP22:IVS3, ADORA2B:IVS1, ACR) and were not unique to known imprinted domains or specific chromosomes. DNA probes within CCNB1, C9orf66, ADORA2B:Promoter-Ex1, PMP22:IVS4-Ex 5, and intergenic region 1p36.3 showed no DA (equivalent accessibility), while OPCML showed unbiased DA. To pinpoint probe locations, we performed 3D-structured illumination microscopy (3D-SIM). This showed that genomic regions with DA had 3.3-fold greater volumetric, integrated probe intensities and broad distributions of probe depths along axial and lateral axes of the 2 homologs, compared to a low copy probe target (NOMO1) with equivalent accessibility. Genomic regions with equivalent accessibility were also enriched for epigenetic marks of open interphase chromatin (DNase I HS, H3K27Ac, H3K4me1) to a greater extent than regions with DA. CONCLUSIONS: This study provides evidence that DA is non-random and reproducible; it is locus specific, but not unique to known imprinted regions or specific chromosomes. Non-random DA was also shown to be heritable within a 2 generation family. DNA probe volume and depth measurements of hybridized metaphase chromosomes further show locus-specific chromatin accessibility differences by super-resolution 3D-SIM. Based on these data and the analysis of interphase epigenetic marks of genomic intervals with DA, we conclude that there are localized differences in compaction of homologs during mitotic metaphase and that these differences may arise during or preceding metaphase chromosome compaction. Our results suggest new directions for locus-specific structural analysis of metaphase chromosomes, motivated by the potential relationship of these findings to underlying epigenetic changes established during interphase.

17.
Mol Cytogenet ; 4(1): 15, 2011 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-21824424

RESUMEN

BACKGROUND: Segmental duplicons (SDs) predispose to an increased frequency of chromosomal rearrangements. These rearrangements can cause a diverse range of phenotypes due to haploinsufficiency, in cis positional effects or gene interruption. Genomic microarray analysis has revealed gene dosage changes adjacent to duplicons, but the high degree of similarity between duplicon sequences has confounded unequivocal assignment of chromosome breakpoints within these intervals. In this study, we localize rearrangements within duplicon-enriched regions of Angelman/Prader-Willi (AS/PWS) syndrome chromosomal deletions with fluorescence in situ hybridization (FISH). RESULTS: Breakage intervals in AS deletions were localized recursively with short, coordinate-defined, single copy (SC) and low copy (LC) genomic FISH probes. These probes were initially coincident with duplicons and regions of previously reported breakage in AS/PWS. Subsequently, probes developed from adjacent genomic intervals more precisely delineated deletion breakage intervals involving genes, pseudogenes and duplicons in 15q11.2q13. The observed variability in the deletion boundaries within previously described Class I and Class II deletion AS samples is related to the local genomic architecture in this chromosomal region. CONCLUSIONS: Chromosome 15 abnormalities associated with SDs were precisely delineated at a resolution equivalent to genomic Southern analysis. This context-dependent approach can define the boundaries of chromosome rearrangements for other genomic disorders associated with SDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA