Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Microsc ; 291(3): 210-228, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37357432

RESUMEN

Nanocrystalline Ti1- x Crx O2 (0 ≤ x ≤ 0.20) samples were synthesised via acid-modified sol-gel process and characterised with various techniques, such as HRTEM, FESEM, Raman, XPS, DTA and VSM. The TEM image of TiO2 exhibits elongated nanoparticles with an average size of 10 nm. The HRTEM in combination with selected area electron diffraction (SAED) reveals the interplanar spacing and polycrystalline nature of the samples, respectively. FESEM micrographs divulge nonuniform morphologies and less aggregation of the particles in the doped sample. Raman spectra ensure the phase purity of the samples and a blue shift on Cr doping. X-ray photoelectron spectra (XPS) predict the chemical state of the elements and oxygen vacancies in the prepared samples. Room temperature magnetic measurements exhibit a significant variation in the magnetic parameters on Cr doping in TiO2 . The differential thermal analysis (DTA) shows the structural phase transition at ∼630°C. The photocatalytic performance is studied for the degradation of methylene blue (MB) dye under visible light irradiation. A higher photocatalytic efficiency is found for the 20% of Cr-doped TiO2 . These studies propose that the appropriate incorporation of Cr ions makes TiO2 very efficient for visible light-driven photocatalysts required for applications in wastewater treatment. LAY DESCRIPTION: In the present study, nanoparticles of TiO2 and Cr-doped TiO2 have been synthesised by a cost-effective acid-modified sol-gel process. The effect of Cr doping on the microstructure, thermal, magnetic and photocatalytic properties of TiO2 were explored in detail. The transmission electron microscopy (TEM) images exhibit the presence of elongated nanoparticles with an average size of 10 nm. Field emission scanning electron microscopy (FESEM) was used to study the surface morphology of the synthesised materials, which revealed nonuniform morphologies and less aggregation of the particles in the Cr-doped sample. Energy dispersive x-ray spectroscopy (EDS) confirms the elemental compositions with the appropriate stoichiometry of the elements. Raman spectra ensure the phase purity of the materials and also a blue shift with the incorporation of Cr ions in TiO2 . X-ray photoelectron spectra (XPS) predict the chemical state of the elements and oxygen vacancies in the prepared samples. The magnetic nature of all the synthesised samples was examined through the vibrating sample magnetometer (VSM) and revealed weak ferromagnetic behaviour of the samples. These results signify that the oxygen vacancies and defects play a crucial role in developing the ferromagnetic nature of oxide semiconductors. The differential thermal analysis (DTA) shows the structural phase transition at ∼630°C. The photocatalytic performance of the prepared samples was studied for the degradation of methylene blue (MB) dye under irradiation of visible light. A higher photocatalytic efficiency was found for the 20% of Cr-doped TiO2 . These studies propose that the appropriate incorporation of Cr ions makes TiO2 very efficient for visible light-driven photocatalysts required for applications in wastewater treatment.

2.
J Interv Cardiol ; 2022: 2141524, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401064

RESUMEN

Aims: Left distal transradial arterial approach (ldTRA) is a new interventional route that spares right radial artery (RRA) for use in haemodialysis and as bypass graft. Vasant Kunj Left dIstal Transradial ArtEry approach (VKLITE) study aimed to assess the feasibility and safety of ldTRA access during coronary angiography (CAG) and percutaneous coronary intervention (PCI). Methods and Results: Between April 2018 and June 2020, 108 patients were enrolled and underwent CAG ± PCI via ultrasound guided ldTRA. Arterial puncture, CAG, and PCI were successful in 96.3% (104/108), 92.1% (93/101), and 94.1% (32/34) patients, respectively. Access site crossover rate was 14/108 (13.0%). Mean puncture, procedure, and haemostasis time (minutes) were 6.7 ± 7.1, 55.7 ± 32.8, and 23.1 ± 11.9. Median total fluoroscopic time was 6.6 minutes (IQR-14.2), and median total radiation dose was 39.2 Gy-cm2 (IQR-97.0). Local haematoma occurred in 11 patients (10.2%) with major haematoma in 1.9%, all recovering within three weeks. Mean pain score was 2.4 ± 2.3, and patient satisfaction score was 9.0 ± 1.3. LdTRA access compared with RRA access (n = 121) showed significantly increased mean procedure time (55.7 ± 32.8 vs. 43.9 ± 26.0 minutes, p = 0.01) and median total fluoroscopic time (6.6 [IQR-14.2] vs. 4.7 [IQR-8.2] minutes, p = 0.02), with similar median total radiation dose (39.2 [IQR-97.0] vs. 43.8 [IQR-54.5] Gy-cm2, p = 0.56). No radial artery loss, dissection, pseudoaneurysm, arteriovenous fistula, or nerve injury was noted. Conclusions: LdTRA access is feasible with few complications during CAG/PCI. Patient comfort and satisfaction makes it a desirable route for coronary interventions.


Asunto(s)
Intervención Coronaria Percutánea , Arteria Radial , Angiografía Coronaria/efectos adversos , Angiografía Coronaria/métodos , Estudios de Factibilidad , Hematoma/etiología , Humanos , Intervención Coronaria Percutánea/efectos adversos , Arteria Radial/cirugía , Ultrasonografía Intervencional/efectos adversos
3.
Plant Dis ; 2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33829858

RESUMEN

Areca catechu L. (areca) belongs to the Arecaceae family, which is composed of 181 genera and 2,600 species (Christenhusz and Byng 2016), is cultivated extensively in Southern and Southeastern Asia (Peng et al. 2015). Areca has a long history for its important economic and medicinal benefits and is one of the most important commercial crops in Hainan province, China. In recent years, root rot and stem rot diseases have occurred, causing areca plants to wither and even die. The serious symptoms mainly appeared in the Hainan province (Li et al. 2006). In March 2018, the rotten tissues of the diseased plants were observed to become brittle, brown, and even black from the stem base to the root; the outer leaves turned yellow, dry, and dropping in areca plantations of Qionghai county. The disease can spread from individual plants to the whole plantation in one to two years, with the characteristics of large-scale occurrence and rapid transmission, causing huge economic losses. Diseased tissues (5 × 5 mm) were disinfected with 75% ethanol for 30 s, 1% HgCl2 for 1 min, washed in sterile water, placed on potato dextrose agar (PDA) medium and incubated at 28°C (Gao et al. 2019). Pure isolates were obtained by transferring the mycelium around the diseased tissues to PDA several times. The colonies were white and cottony after culturing for 7 days. The reverse side of the colony was yellowish white. Basidiospores were hyaline, thin-walled, smooth, 1.7-1.8 x 1.6-1.7 µm (n=30) in size and circular or ellipse in shape, in addition to a dimitic hyphal system (Das et al. 2017). For molecular identification, the genomic DNA of the isolate was extracted using the thermolysis method (Zhang et al. 2010). The ribosomal internal transcribed spacer (ITS) region was amplified using the primer pairs ITS1/ITS4 (White et al. 1990), and the amplified DNA fragments were sequenced. The obtained ITS sequence (GenBank accession No. MW534416) had 99.36% identity with the reference sequence (GenBank accession No. KX013157) of Grammothele lineata Berk. & M.A. Curtis. A phylogenetic tree was constructed with software MEGA7 using the neighbor-joining method, showing that the isolate was grouped in the same clade as G. lineata. To fulfil Koch's postulates, a pathogenicity test was performed using the stems of 6-month-old healthy areca seedlings. Stem surfaces were sterilized with 70% ethanol for 30 s, rinsed three times with sterile water, and gently stabbed with a sterile needle, and then inoculated with a 1-cm-diameter colonized PDA disk from a 7-day culture on wounds, moistened with wet cotton, and wrapped with a fresh plastic wrap. Plants inoculated with sterile PDA medium plugs were used as a control. The inoculation assay was carried out twice, with five plants in both control and treatment in each test. After 20 days, the stems of the plants inoculated with the pathogen exhibited rotten symptoms, and the leaves began to become yellow and shrunken, while the control plants had only the surface of the stems discolored slightly and the inner tissue was undamaged. The fungus was re-isolated from the infected stems. Based on the morphological observations and ITS sequence analysis, the isolate was identified as G. lineata. As far as we know, this is the first report of G. lineata causing the stem rot of areca in China.

4.
Toxicol Mech Methods ; 28(9): 699-708, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30019977

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra of the midbrain. Dopamine agonists help the patients with PD by reversing the dopamine depletion and related motor deficits. In the present work, cabergoline, a potent ergot dopamine agonist, was given in the form of cabergoline alginate nanocomposite (CANC) to the PD model flies to study its effects on climbing ability, activity pattern, life span, lipid peroxidation, glutathione (GSH) content, glutathione-S-transferase (GST) activity, dopamine content, protein carbonyl content, mean gray-scale values, and caspase-3 and caspase-9 activities. Cabergoline alginate nanocomposite was synthesized by adding the cabergoline solution in the warm aqueous solution of sodium alginate; The synthesized CANC was characterized using fourier transform (FTIR) infrared spectroscopy, transmission electron microscopy (TEM), and UV-Visible spectroscopic techniques. The synthesized CANC having the final doses of 1, 2, and 3 µM was supplemented with diet and the flies were allowed to feed on it for 24 days. Cabergoline alginate nanocomposite significantly increases climbing ability, reduces lipid peroxidation, GST activity, protein carbonyl content, caspase 3/9 activity, mean gray-scale values, and increases the GSH as well as dopamine content in a dose-dependent manner. The results of this study suggest that CANC is potent in delaying and reducing the symptoms of PD.


Asunto(s)
Animales Modificados Genéticamente , Cabergolina/uso terapéutico , Agonistas de Dopamina/uso terapéutico , Drosophila melanogaster , Nanocompuestos/química , Enfermedad de Parkinson/tratamiento farmacológico , Alginatos/química , Animales , Conducta Animal/efectos de los fármacos , Cabergolina/química , Modelos Animales de Enfermedad , Dopamina/metabolismo , Agonistas de Dopamina/química , Relación Dosis-Respuesta a Droga , Drosophila melanogaster/genética , Longevidad/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/genética
5.
Toxicol Mech Methods ; 25(6): 425-32, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26000624

RESUMEN

AIMS: In the present study, copper-doped ZnO nanoparticles (doped ZnO NPs Cu) were synthesized, characterized and evaluated for their possible toxic effects in Drosophila melanogaster (Oregon R). METHODS AND RESULTS: X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectrometry confirm the formation of doped ZnO NPs Cu. Doped ZnO NPs Cu (3%) were mixed in the diet at final concentrations of 1, 2, 4 and 8 µg/µl. The starved male flies were allowed to feed on it for 4 days. After completion of the desired duration, climbing ability, activity pattern, activity of acetylcholinesterase (AChE), glutathione (GSH), glutathione-S-transferase (GST), lipid peroxidation (LPO), total protein content and caspases were studied. SDS-PAGE was also performed for whole fly homogenate of control as well as treated flies. No loss in the climbing and activity pattern was observed at the selected doses of doped ZnO NPs Cu. No significant change in the levels of AChE, GSH, GST, LPO, caspase 9/3 and total protein content was observed. The brain sections showed no gross changes in the structure and SDS-PAGE patterns also revealed no change in the protein expression. CONCLUSIONS: The results suggest that doped ZnO NPs Cu are non-toxic at 1, 2, 4 and 8 µg/µl of concentration in D. melanogaster.


Asunto(s)
Cobre/toxicidad , Drosophila melanogaster/efectos de los fármacos , Nanopartículas del Metal , Óxido de Zinc/toxicidad , Acetilcolinesterasa/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/ultraestructura , Caspasas/metabolismo , Cobre/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/ultraestructura , Glutatión/metabolismo , Glutatión Transferasa/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Microscopía Electrónica de Rastreo , Actividad Motora/efectos de los fármacos , Medición de Riesgo , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , Óxido de Zinc/química
6.
Neurochem Int ; 179: 105839, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39173832

RESUMEN

The intricate nature of Alzheimer's disease (AD) has presented significant hurdles in the development of effective interventions. Sulforaphane (SFN) is of interest due to its antioxidative, anti-inflammatory, and neuroprotective properties, which could address various aspects of AD pathology. This study explores the potential of SFN in a rat model of AD induced by Aß (1-42) peptides. AD symptoms were triggered in rats by injecting Aß (1-42) peptides directly into their cerebral ventricles. SFN (10 mg/kg and 20 mg/kg), Trigonelline (10 mg/kg), and Pioglitazone (10 mg/kg) were administered in Aß (1-42) treated animals. Behavioral assessments were performed using the Novel Object Recognition tests. Various biochemical parameters, such as soluble Aß (1-42), IRS-S312, GSK-3ß, TNF-α, acetylcholinesterase, nitrite levels, lipid peroxidation, and reduced glutathione activity, were quantified using ELISA kits and spectrophotometric assays. Histopathological analyses included Hematoxylin and Eosin, Crystal Violet, Congo red, and IRS-1 Immunohistochemistry staining. Quantification was performed to assess neuronal loss and Aß plaque burden. The novelty of this study lies in its comprehensive evaluation of SFN's impact on multiple AD-related pathways at dual doses. The Novel Object Recognition test revealed that SFN, especially at higher doses, improved memory deficits induced by Aß (1-42). Biochemically, SFN reduced hippocampal Aß levels, IRS-S312, GSK-3ß, TNF-α, and acetylcholinesterase activity, while increasing glutathione levels, all in a dose-dependent manner. Histopathological analyses further confirmed SFN's protective role against Aß-induced neuronal damage, amyloidosis, and changes in insulin signaling. These results highlight SFN's potential as a multifaceted therapeutic agent for AD, offering a promising avenue for treatment due to its antioxidative, anti-inflammatory, and neuroprotective properties. The inclusion of combination treatments with Trigonelline and Pioglitazone alongside SFN offers insights into potential synergistic effects, which could pave the way for developing combination therapies for AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Modelos Animales de Enfermedad , Isotiocianatos , Fármacos Neuroprotectores , Fragmentos de Péptidos , Sulfóxidos , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/toxicidad , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Isotiocianatos/farmacología , Isotiocianatos/uso terapéutico , Fragmentos de Péptidos/toxicidad , Masculino , Ratas , Sulfóxidos/farmacología , Ratas Wistar
7.
Plants (Basel) ; 13(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38611473

RESUMEN

Brassica napus (B. napus) is susceptible to multiple abiotic stresses that can affect plant growth and development, ultimately reducing crop yields. In the past, many genes that provide tolerance to abiotic stresses have been identified and characterized. Peroxidase (POD) proteins, members of the oxidoreductase enzyme family, play a critical role in protecting plants against abiotic stresses. This study demonstrated a comprehensive investigation of the POD gene family in B. napus. As a result, a total of 109 POD genes were identified across the 19 chromosomes and classified into five distinct subgroups. Further, 44 duplicate events were identified; of these, two gene pairs were tandem and 42 were segmental. Synteny analysis revealed that segmental duplication was more prominent than tandem duplication among POD genes. Expression pattern analysis based on the RNA-seq data of B. napus indicated that BnPOD genes were expressed differently in various tissues; most of them were expressed in roots rather than in other tissues. To validate these findings, we performed RT-qPCR analysis on ten genes; these genes showed various expression levels under abiotic stresses. Our findings not only furnish valuable insights into the evolutionary dynamics of the BnPOD gene family but also serve as a foundation for subsequent investigations into the functional roles of POD genes in B. napus.

8.
Heliyon ; 10(2): e24781, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38312627

RESUMEN

Folk medicine, rooted in historical practice, has long been used for medicinal purposes, emphasizing the need to ensure the safety, quality, and efficacy of herbal medicines. This imperative has grown over time, prompting collaborative efforts to document historical records and preserve invaluable knowledge of medicinal plants. The Lamiaceae (Labiatae) family, renowned for its rich assortment of medicinal plants characterized by high concentrations of volatile oils, stands out in this regard. This review focuses on Clinopodium vulgare (C. vulgare) L., commonly known as wild basil or basil thyme, a significant species within the Lamiaceae family found across diverse global regions. C. vulgare boasts a storied history of application in treating various ailments, such as gastric ulcers, diabetes, and inflammation, dating back to ancient times. Rigorous research has substantiated its pharmacological properties, revealing its antioxidant, antiviral, antibacterial, anti-inflammatory, anticancer, antihypertensive, and enzyme-inhibitory effects. This comprehensive review provides an insightful overview of the Lamiaceae family, elucidates the extraction methods employed to obtain medicinal compounds, explores the phytoconstituents present in C. vulgare, and systematically details its diverse pharmacological properties. Additionally, the review delves into considerations of toxicity. By synthesizing this wealth of information, this study opens avenues for the potential therapeutic applications of C. vulgare. The practical value of this research lies in its contribution to the understanding of medicinal plants, mainly focusing on the pharmacological potential of C. vulgare. This exploration enriches our knowledge of traditional medicine and paves the way for innovative therapeutic approaches, offering promising prospects for future drug development. As the demand for natural remedies continues to increase, this work provides a valuable resource for researchers, practitioners, and stakeholders in herbal medicine and pharmacology.

9.
J Biomater Sci Polym Ed ; 34(5): 674-694, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36345958

RESUMEN

Non-targeted cancer therapy poses a huge risk to the cancer patients' life due to high toxicity offered by chemotherapy. Breast carcinoma is one of such deleterious disease, demanding a highly effectual treatment option which could reduce the toxicity and extend survival rate. Since, folate receptors extensively display themselves on the cancer cell surface, targeting them would help to ameliorate the progression and metastasis. Considering this, we envisaged and developed sulforaphane loaded folate engineered microbeads to target breast cancer cells over-expressing folate receptors. The surface engineered microbeads were optimized and developed using emulsion gelation technique, among which the best developed preparation demonstrated the particle size of 1302 ± 3.98 µm, % EE of 84.1 ± 3.32% and in vitro drug release of 98.1 ± 4.42%@24h. The spherical sized microbead showed controlled release with improved haem-compatibility in comparison to the bare drug. Free radical scavenging activity by ABTS assay showed strong anti-oxidant activity (IC50 20.62 µg/ml) of the targeted microbeads with profound cancer cell sup pressing effect (IC50 17.48 ± 3.5 µM) as observed in MCF-7 cells by MTT assay. Finally, in comparison to lone SFN, the targeted therapy showed enhanced uptake by the intestinal villi indicating a suitable oral targeted therapy against breast carcinoma.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Nanopartículas , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Microesferas , Ácido Fólico , Portadores de Fármacos/farmacología , Línea Celular Tumoral , Supervivencia Celular , Antineoplásicos/farmacología
10.
Hortic Res ; 10(4): uhad027, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37090094

RESUMEN

Fragaria vesca, commonly known as wild or woodland strawberry, is the most widely distributed diploid Fragaria species and is native to Europe and Asia. Because of its small plant size, low heterozygosity, and relative ease of genetic transformation, F. vesca has been a model plant for fruit research since the publication of its Illumina-based genome in 2011. However, its genomic contribution to octoploid cultivated strawberry remains a long-standing question. Here, we de novo assembled and annotated a telomere-to-telomere, gap-free genome of F. vesca 'Hawaii 4', with all seven chromosomes assembled into single contigs, providing the highest completeness and assembly quality to date. The gap-free genome is 220 785 082 bp in length and encodes 36 173 protein-coding gene models, including 1153 newly annotated genes. All 14 telomeres and seven centromeres were annotated within the seven chromosomes. Among the three previously recognized wild diploid strawberry ancestors, F. vesca, F. iinumae, and F. viridis, phylogenomic analysis showed that F. vesca and F. viridis are the ancestors of the cultivated octoploid strawberry F. × ananassa, and F. vesca is its closest relative. Three subgenomes of F. × ananassa belong to the F. vesca group, and one is sister to F. viridis. We anticipate that this high-quality, telomere-to-telomere, gap-free F. vesca genome, combined with our phylogenomic inference of the origin of cultivated strawberry, will provide insight into the genomic evolution of Fragaria and facilitate strawberry genetics and molecular breeding.

11.
J Chem Phys ; 135(5): 054501, 2011 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-21823706

RESUMEN

The structural and electrical transport properties of LaMn(1-x)Fe(x)O(3) (0.1 ≤ x ≤ 0.6) bulk samples have been investigated. The powder x-ray diffraction patterns at room temperature show that all samples are formed in single phase. The temperature dependent resistivity data have been fitted with the Mott's variable-range hopping (VRH) model for an entire studied range of the temperature (77-300 K) to calculate the hopping distance (R(h)) and the density of states at Fermi level (N(E(F))). It is found that all parameters vary systematically with the increase in Fe concentration. Moreover, the resistivity data were also fitted in the small polaron hopping (SPH) model. The non-adiabatic SPH conduction mechanism is followed by all samples. This type conduction mechanism is far accompanied by subtle electronically induced structural changes involving in Fe-O-Fe and Fe-O-Mn bond angles and bond lengths. Thus we suggest that the transport properties can be explained according to the additional localization of charge carriers induced by Fe doping.

12.
Oxid Med Cell Longev ; 2021: 9068850, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34754365

RESUMEN

Hepatocellular carcinoma (HCC) is due to poor prognosis and lack of availability of effective treatment. Novel therapeutic strategies will be the fine tuning of intracellular ROS signaling to effectively deprive cells of ROS-induced tumor-promoting events. This review discusses the generation of ROS, the major signaling their modulation in therapeutics. We explore some of the major pathways involved in HCC, which include the VEGF, MAPK/ERK, mTOR, FGF, and Ser/Thr kinase pathways. In this review, we study cornerstone on natural bioactive compounds with their effect on hepatocarcinomas. Furthermore, we focus on oxidative stress and FDA-approved signaling pathway inhibitors, along with chemotherapy and radiotherapy enhancers which with early evidence of success. While more in vivo testing is required to confirm the findings presented here, our findings will aid future nonclinical, preclinical, and clinical studies with these compounds, as well as inspire medicinal chemistry scientists to conduct appropriate research on this promising natural compound and their derivatives.


Asunto(s)
Antineoplásicos/farmacología , Productos Biológicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología
13.
Neuropharmacology ; 177: 108216, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32707222

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disease due to the degeneration of dopaminergic neurons in substantia nigra pars compacta of the mid brain. The present study investigates the neuro-protective role of synthesized ropinirole silver nanocomposite (RPAgNC) in Drosophila model of PD. α-synuclein accumulation in the brain of flies (PD flies) leads to the damage of dopaminergic neurons, dopamine depletion, impaired muscular coordination, memory decline and increase in oxidative stress. Ingestion of the RPAgNC by Drosophila significantly prevented the neuronal degeneration compared to only ropinirole. The results confirm that the RPAgNC exerts more neuro-protective effect compared to dopamine agonist i.e. ropinirole as such drug in experimental PD flies. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.


Asunto(s)
Antiparkinsonianos/administración & dosificación , Modelos Animales de Enfermedad , Indoles/administración & dosificación , Nanocompuestos/administración & dosificación , Trastornos Parkinsonianos/tratamiento farmacológico , Plata/administración & dosificación , Animales , Animales Modificados Genéticamente , Drosophila melanogaster , Humanos , Masculino , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/metabolismo , alfa-Sinucleína/biosíntesis , alfa-Sinucleína/genética
14.
Artículo en Inglés | MEDLINE | ID: mdl-32547961

RESUMEN

Small protein B(SmpB) cooperates with transfer-messenger RNA (tmRNA) for trans-translation to ensure the quality control of protein synthesis in prokaryotes. Furthermore, they regulate cell metabolism separately. According to research, SmpB functions as a transcription factor, and tmRNA acts as a small RNA. Purine pathway has been reported to be related to trimethoprim resistance, including hypoxanthine synthesis, adenosine metabolism and guanosine metabolism. Another reason of drug tolerance is the efflux pump of the bacterium. In transcriptomic data, it was shown that the expression of some related enzymes in adenosine metabolism were raised significantly in smpB deletion strain than that of wild type, which led to the differential trimethoprim resistance of Aeromonas veronii (A. veronii). Furthermore, the metabolic products of adenosine AMP, cAMP, and deoxyadenosine were accumulated significantly. However, the expressions of the enzymes related to hypoxanthine synthesis and guanosine metabolism were elevated significantly in ssrA (small stable RNA, tmRNA) deletion strain, which eventually caused an augmented metabolic product xanthine. In addition, the deletion of ssrA also affected the significant downregulations of efflux pump acrA/acrB. The minimal inhibitory concentrations (MIC) were overall decreased after the trimethoprim treatment to the wild type, ΔsmpB and ΔssrA. And the difference in sensitivity between ΔsmpB and ΔssrA was evident. The MIC of ΔsmpB was descended significantly than those of wild type and ΔssrA in M9 medium supplemented with 1 mM adenosine, illustrating that the adenosine metabolism pathway was principally influenced by SmpB. Likewise, the strain ΔssrA conferred more sensitivity than wild type and ΔsmpB in M9 medium supplemented with 1mM guanosine. By overexpressing acrA/acrB, the tolerance to trimethoprim was partially recovered in ΔssrA. These results revealed that SmpB and tmRNA acted on different branches in purine metabolism, conferring the diverse trimethoprim resistance to A. veronii. This study suggests that the trans-translation system might be an effective target in clinical treatment of A. veronii and other multi-antibiotic resistance bacteria with trimethoprim.


Asunto(s)
Aeromonas veronii , Resistencia al Trimetoprim , Aeromonas veronii/genética , Biosíntesis de Proteínas , Purinas , ARN Bacteriano/metabolismo
15.
ACS Omega ; 5(48): 31076-31084, 2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33324816

RESUMEN

The present work describes the synthesis of Ag-CoFe2O4/rGO nanocomposite as a photocatalyst through the hydrothermal process by the attachment of silver and cobalt ferrite (CoFe2O4) nanoparticles on the surface of reduced graphene oxide. The effect of Ag and reduced graphene oxide (rGO) on the structure, optical, magnetic, photocatalytic, and electrochemical performance of the CoFe2O4 is systematically explored through various analytical techniques. The analyses of the observed outcomes reveal that the graphene sheets are exfoliated and decorated with well-dispersed Ag and CoFe2O4 nanoparticles. UV-vis spectra indicate a gradual shift in the absorption edge toward the higher wavelength with the addition of Ag ions, which signifies variation in the energy gap of the samples. Photoluminescence results divulge that graphene can decline the electron-hole recombination rate and improve the photocatalytic activity of the Ag-CoFe2O4/rGO nanocomposite. In this context, the Ag-CoFe2O4/rGO sample presents good catalytic activity as compared to the CoFe2O4 and Ag-CoFe2O4 photocatalysts for the degradation of methylene blue (MB) dye and suggests that the rGO plays a vital role in the Ag-CoFe2O4/rGO nanocomposite. The deterioration rate of the samples is found to be in the order of CoFe2O4(78.03%) < Ag-CoFe2O4(83.04%) < Ag-CoFe2O4/rGO(93.25%) in 100 min for MB dye, respectively, under visible-light irradiation. The room-temperature ferromagnetic behavior of the samples is confirmed by the M-H hysteresis loop measurements. Overall, the Ag-CoFe2O4/rGO nanocomposite promises to be a strong magnetic photocatalyst for contaminated wastewater treatment. The electrochemical performance of all of the samples was examined by the cyclic voltammetry (CV) that exhibits a superior rate performance and cycle stability of the Ag-CoFe2O4/rGO nanocomposite as compared to the other samples.

16.
Micromachines (Basel) ; 12(1)2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33396756

RESUMEN

A low-profile frequency reconfigurable monopole antenna operating in the microwave frequency band is presented in this paper. The proposed structure is printed on Flame Retardant-4 (FR-4) substrate having relative permittivity of 4.3 and tangent loss of 0.025. Four pin diode switches are inserted between radiating patches for switching the various operating modes of an antenna. The proposed antenna operates in five modes, covering nine different bands by operating at single bands of 5 and 3.5 GHz in Mode 1 and Mode 2, dual bands (i.e., 2.6 and 6.5 GHz, 2.1 and 5.6 GHz) in Mode 3 and 4 and triple bands in Mode 5 (i.e., 1.8, 4.8, and 6.4 GHz). The Voltage Standing Waves Ratio (VSWR) of the presented antenna is less than 1.5 for all the operating bands. The efficiency of the designed antenna is 84 % and gain ranges from 1.2 to 3.6 dBi, respectively, at corresponding resonant frequencies. The achieve bandwidths at respective frequencies ranges from 10.5 to 28%. The proposed structure is modeled in Computer Simulation Technology microwave studio (CST MWS) and the simulated results are experimentally validated. Due to its reasonably small size and support for multiple wireless standards, the proposed antenna can be used in modern handheld fifth generation (5G) devices as well as Internet of Things (IoT) enabled systems in smart cities.

17.
J Toxicol Environ Health A ; 71(2): 119-30, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18080902

RESUMEN

Imidacloprid, a neonicotinoid, is one of the fastest growing insecticides in use worldwide because of its selectivity for insects. The potential for neurotoxicity following in utero exposure to imidacloprid is not known. Timed pregnant Sprague-Dawley rats (300-350 g) on d 9 of gestation were treated with a single intraperitoneal injection (i.p.) of imidacloprid (337 mg/kg, 0.75 x LD50, in corn oil). Control rats were treated with corn oil. On postnatal day (PND) 30, all male and female offspring were evaluated for (a) acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activity, (b) ligand binding for nicotinic acetylcholine receptors (nAChR) and muscarinic acetylcholine receptors (m2 mAChR), (c) sensorimotor performance (inclined plane, beam-walking, and forepaw grip), and (d) pathological alterations in the brain (using cresyl violet and glial fibrillary acidic protein [GFAP] immunostaining). The offspring of treated mothers exhibited significant sensorimotor impairments at PND 30 during behavioral assessments. These changes were associated with increased AChE activity in the midbrain, cortex and brainstem (125-145% increase) and in plasma (125% increase). Ligand binding densities for [3H]cytosine for alpha4beta2 type nAchR did not show any significant change, whereas [3H]AFDX 384, a ligand for m2mAChR, was significantly increased in the cortex of offspring (120-155% increase) of imidacloprid-treated mothers. Histopathological evaluation using cresyl violet staining did not show any alteration in surviving neurons in various brain regions. On the other hand, there was a rise in GFAP immunostaining in motor cortex layer III, CA1, CA3, and the dentate gyrus subfield of the hippocampus of offspring of imidacloprid-treated mothers. The results indicate that gestational exposure to a single large, nonlethal, dose of imidacloprid produces significant neurobehavioral deficits and an increased expression of GFAP in several brain regions of the offspring on PND 30, corresponding to a human early adolescent age. These changes may have long-term adverse health effects in the offspring.


Asunto(s)
Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Imidazoles/toxicidad , Insecticidas/toxicidad , Nitrocompuestos/toxicidad , Desempeño Psicomotor/efectos de los fármacos , Acetilcolinesterasa/metabolismo , Animales , Encéfalo/metabolismo , Butirilcolinesterasa/sangre , Femenino , Masculino , Intercambio Materno-Fetal , Neonicotinoides , Embarazo , Ratas , Ratas Sprague-Dawley , Receptores Muscarínicos/metabolismo , Receptores Nicotínicos/metabolismo
18.
Sci Rep ; 7(1): 12560, 2017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28970556

RESUMEN

The microstructural, optical and photocatalytic properties of undoped and 5% Zn doped CeO2 nanocrystals (NCs) have been explored through various analytical techniques, viz. powder x-ray diffraction (PXRD), x-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), UV-visible, Raman and photoluminescence (PL) spectroscopy. XRD data analysis revealed face centred cubic (FCC) crystal symmetry of the samples with average crystallite size in the range of 19-24 nm. XPS results confirmed that the Zn ions exist in +2 states and successfully incorporated into the CeO2 matrix. Internal structure and morphology observed by TEM exhibited almost uniform cubical shape of the particles of average size ~20-26 nm. The enegy bandgap of undoped and Zn doped CeO2 NCs had a direct transition of 3.46 eV and 3.57 eV respectively as estimated by the optical absorption data. The increase in the bandgap revealed blue shift of absorption edge due to the quantum confinement effects. The NCs exhibited an inherent luminescence emission peak at ~408 nm in PL spectra. Improvement in the photocatalytic activity was observed for Zn incorporated sample attributed to the enhanced light absorption or/and fall in charge recombination rate between CeO2 and Zn.

19.
Sci Rep ; 7(1): 11873, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28928478

RESUMEN

Biomimetic synthesis of nanoparticles offers a convenient and bio friendly approach to fabricate complex structures with sub-nanometer precision from simple precursor components. In the present study, we have synthesized nanoparticles of Amphotericin B (AmB), a potent antifungal agent, using Aloe vera leaf extract. The synthesis of AmB nano-assemblies (AmB-NAs) was established employing spectro-photometric and electron microscopic studies, while their crystalline nature was established by X-ray diffraction. AmB-nano-formulation showed much higher stability in both phosphate buffer saline and serum and exhibit sustained release of parent drug over an extended time period. The as-synthesized AmB-NA possessed significantly less haemolysis as well as nephrotoxicity in the host at par with Ambisome®, a liposomized AmB formulation. Interestingly, the AmB-NAs were more effective in killing various fungal pathogens including Candida spp. and evoked less drug related toxic manifestations in the host as compared to free form of the drug. The data of the present study suggest that biomimetically synthesized AmB-NA circumvent toxicity issues and offer a promising approach to eliminate systemic fungal infections in Balb/C mice.


Asunto(s)
Anfotericina B , Antifúngicos , Materiales Biomiméticos , Candida albicans/metabolismo , Candidiasis/tratamiento farmacológico , Nanopartículas , Aloe/química , Anfotericina B/química , Anfotericina B/farmacología , Animales , Antifúngicos/síntesis química , Antifúngicos/química , Antifúngicos/farmacología , Materiales Biomiméticos/síntesis química , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Candidiasis/metabolismo , Línea Celular , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química , Nanopartículas/uso terapéutico , Extractos Vegetales/química , Hojas de la Planta/química
20.
Dis Model Mech ; 9(1): 63-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26542705

RESUMEN

The effect of bromocriptine, a dopamine agonist, administered in the form of bromocriptine alginate nanocomposite (BANC) was studied on Parkinson's disease (PD) model flies. The synthesized BANC was subject to characterization and, at a final concentration of 0.5, 1.0 and 1.5 µM, was mixed in diet. The PD flies were allowed to feed on it for 24 days. A significant dose-dependent delay in the loss of climbing activity and activity pattern was observed in PD flies exposed to 0.5, 1.0 and 1.5 µM BANC. The PD flies exposed to BANC also showed a significant reduction in lipid peroxidation and glutathione-S-transferase activity, and an increase in glutathione content. However, no gross morphological changes were observed in the brains of PD flies compared with controls. The results suggest that BANC is effective in reducing the PD symptoms in these transgenic flies.


Asunto(s)
Alginatos/química , Bromocriptina/química , Drosophila melanogaster/genética , Nanocompuestos/química , Enfermedad de Parkinson/genética , Animales , Animales Modificados Genéticamente , Encéfalo/fisiología , Cruzamientos Genéticos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Glutatión/química , Glutatión Transferasa/metabolismo , Peroxidación de Lípido , Masculino , Enfermedad de Parkinson/terapia , Permeabilidad , Solubilidad , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA