Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
IEEE J Biomed Health Inform ; 22(1): 285-290, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28459697

RESUMEN

Chronic respiratory diseases, mainly asthma and chronic obstructive pulmonary disease (COPD), affect the lives of people by limiting their activities in various aspects. Overcrowding of hospital emergency departments (EDs) due to respiratory diseases in certain weather and environmental pollution conditions results in the degradation of quality of medical care, and even limits its availability. A useful tool for ED managers would be to forecast peak demand days so that they can take steps to improve the availability of medical care. In this paper, we developed an artificial neural network based classifier using multilayer perceptron with back propagation algorithm that predicts peak event (peak demand days) of patients with respiratory diseases, mainly asthma and COPD visiting EDs in Dallas County of Texas in the United States. The precision and recall for peak event class were 77.1% and 78.0%, respectively, and those for nonpeak events were 83.9% and 83.2%, respectively. The overall accuracy of the system is 81.0%.


Asunto(s)
Asma/epidemiología , Servicio de Urgencia en Hospital/estadística & datos numéricos , Informática Médica/métodos , Redes Neurales de la Computación , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Contaminantes Atmosféricos , Asma/terapia , Enfermedad Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/terapia , Tiempo (Meteorología)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA