Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 82(3): 843-56, 2016 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26590274

RESUMEN

Burkholderia cenocepacia, a member of the B. cepacia complex (Bcc), is an opportunistic pathogen causing serious chronic infections in patients with cystic fibrosis. Tyrosine phosphorylation has emerged as an important posttranslational modification modulating the physiology and pathogenicity of Bcc bacteria. Here, we investigated the predicted bacterial tyrosine kinases BCAM1331 and BceF and the low-molecular-weight protein tyrosine phosphatases BCAM0208, BceD, and BCAL2200 of B. cenocepacia K56-2. We show that BCAM1331, BceF, BCAM0208, and BceD contribute to biofilm formation, while BCAL2200 is required for growth under nutrient-limited conditions. Multiple deletions of either tyrosine kinase or low-molecular-weight protein tyrosine phosphatase genes resulted in the attenuation of B. cenocepacia intramacrophage survival and reduced pathogenicity in the Galleria mellonella larval infection model. Experimental evidence indicates that BCAM1331 displays reduced tyrosine autophosphorylation activity compared to that of BceF. With the artificial substrate p-nitrophenyl phosphate, the phosphatase activities of the three low-molecular-weight protein tyrosine phosphatases demonstrated similar kinetic parameters. However, only BCAM0208 and BceD could dephosphorylate BceF. Further, BCAL2200 became tyrosine phosphorylated in vivo and catalyzed its autodephosphorylation. Together, our data suggest that despite having similar biochemical activities, low-molecular-weight protein tyrosine phosphatases and tyrosine kinases have both overlapping and specific roles in the physiology of B. cenocepacia.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Burkholderia cenocepacia/fisiología , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Animales , Proteínas Bacterianas/genética , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/metabolismo , Burkholderia cenocepacia/patogenicidad , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Humanos , Larva/microbiología , Macrófagos/microbiología , Ratones , Mariposas Nocturnas/microbiología , Fosforilación , Fosfotirosina/metabolismo , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Quinasas/genética , Células RAW 264.7 , Virulencia
2.
J Biol Chem ; 288(42): 30473-30484, 2013 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-24014026

RESUMEN

AtsR is a membrane-bound hybrid sensor kinase of Burkholderia cenocepacia that negatively regulates quorum sensing and virulence factors such as biofilm production, type 6-secretion, and protease secretion. Here we elucidate the mechanism of AtsR phosphorelay by site-directed mutagenesis of predicted histidine and aspartic acid phosphoacceptor residues. We demonstrate by in vitro phosphorylation that histidine 245 and aspartic acid 536 are conserved sites of phosphorylation in AtsR, and we also identify the cytosolic response regulator AtsT (BCAM0381) as a key component of the AtsR phosphorelay pathway. Monitoring the function of AtsR and its derivatives in vivo by measuring extracellular protease activity and swarming motility confirmed the in vitro phosphorylation results. Together we find that the AtsR receiver domain plays a fine-tuning role in determining the levels of phosphotransfer from its sensor kinase domain to the AtsT response regulator.


Asunto(s)
Proteínas Bacterianas/metabolismo , Burkholderia cenocepacia/enzimología , Proteínas Quinasas/metabolismo , Percepción de Quorum/fisiología , Transducción de Señal/fisiología , Animales , Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos/fisiología , Infecciones por Burkholderia/enzimología , Infecciones por Burkholderia/genética , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/patogenicidad , Línea Celular , Ratones , Fosforilación/fisiología , Proteínas Quinasas/genética
3.
mBio ; 6(3): e00679, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26045541

RESUMEN

UNLABELLED: Burkholderia cenocepacia causes opportunistic infections in plants, insects, animals, and humans, suggesting that "virulence" depends on the host and its innate susceptibility to infection. We hypothesized that modifications in key bacterial molecules recognized by the innate immune system modulate host responses to B. cenocepacia. Indeed, modification of lipopolysaccharide (LPS) with 4-amino-4-deoxy-L-arabinose and flagellin glycosylation attenuates B. cenocepacia infection in Arabidopsis thaliana and Galleria mellonella insect larvae. However, B. cenocepacia LPS and flagellin triggered rapid bursts of nitric oxide and reactive oxygen species in A. thaliana leading to activation of the PR-1 defense gene. These responses were drastically reduced in plants with fls2 (flagellin FLS2 host receptor kinase), Atnoa1 (nitric oxide-associated protein 1), and dnd1-1 (reduced production of nitric oxide) null mutations. Together, our results indicate that LPS modification and flagellin glycosylation do not affect recognition by plant receptors but are required for bacteria to establish overt infection. IMPORTANCE: Virulence and pathogenicity are properties ascribed to microbes, which actually require careful consideration of the host. Using the term "pathogen" to define a microbe without considering its host has recently been debated, since the microbe's capacity to establish a niche in a given host is a critical feature associated with infection. Opportunistic bacteria are a perfect example of microbes whose ability to cause disease is intimately related to the host's ability to recognize and respond to the infection. Here, we use the opportunistic bacterium Burkholderia cenocepacia and the host plant Arabidopsis thaliana to investigate the role of bacterial surface molecules, namely, lipopolysaccharide and flagellin, in contributing to infection and also in eliciting a host response. We reveal that both molecules can be modified by glycosylation, and although the modifications are critical for the bacteria to establish an infection, they do not impact the host's ability to recognize the pathogen.


Asunto(s)
Arabidopsis/microbiología , Burkholderia cenocepacia/patogenicidad , Flagelina/metabolismo , Insectos/microbiología , Lipopolisacáridos/metabolismo , Animales , Arabidopsis/inmunología , Arabidopsis/metabolismo , Burkholderia cenocepacia/inmunología , Eliminación de Gen , Glicosilación , Insectos/fisiología , Larva/microbiología , Larva/fisiología , Óxido Nítrico/metabolismo , Proteínas de Plantas/genética , Especies Reactivas de Oxígeno/metabolismo , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA