Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Photosynth Res ; 159(2-3): 303-320, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38466456

RESUMEN

Photosystem II (PSII) is one of the main pigment-protein complexes of photosynthesis which is highly sensitive to unfavorable environmental factors. The heterogeneity of PSII properties is essential for the resistance of autotrophic organisms to stress factors. Assessment of the PSII heterogeneity may be used in environmental monitoring for on-line detection of contamination of the environment. We propose an approach to assess PSII oxygen-evolving complex and light-harvesting antenna heterogeneity that is based on mathematical modeling of the shape of chlorophyll a fluorescence rise of 3-(3,4-dichlorophenyl)-1,1-dimethylurea-treated samples. The hierarchy of characteristic times of the processes considered in the model makes it possible to reduce the model to a system of three ordinary differential equations. The analytic solution of the reduced three-state model is expressed as a sum of two exponential functions, and it exactly reproduces the solution of the complete system within the time range from microseconds to hundreds of milliseconds. The combination of several such models for reaction centers with different properties made it possible to use it as an instrument to study PSII heterogeneity. PSII heterogeneity was studied for Chlamydomonas at different intensities of actinic light, for Scenedesmus under short-term heating, and for Chlorella grown in nitrate-enriched and nitrate-depleted media.


Asunto(s)
Chlorella , Complejo de Proteína del Fotosistema II , Complejo de Proteína del Fotosistema II/metabolismo , Clorofila A , Diurona , Clorofila , Chlorella/metabolismo , Nitratos , Fotosíntesis , Modelos Teóricos , Complejos de Proteína Captadores de Luz/metabolismo , Luz
2.
Int J Mol Sci ; 24(21)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37958892

RESUMEN

Methylene blue has multiple antiviral properties against Severe Acute Respiratory Syndrome-related Coronavirus 2 (SARS-CoV-2). The ability of methylene blue to inhibit different stages of the virus life cycle, both in light-independent and photodynamic processes, is used in clinical practice. At the same time, the molecular aspects of the interactions of methylene blue with molecular components of coronaviruses are not fully understood. Here, we use Brownian dynamics to identify methylene blue binding sites on the SARS-CoV-2 envelope. The local lipid and protein composition of the coronavirus envelope plays a crucial role in the binding of this cationic dye. Viral structures targeted by methylene blue include the S and E proteins and negatively charged lipids. We compare the obtained results with known experimental data on the antiviral effects of methylene blue to elucidate the molecular basis of its activity against coronaviruses.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Azul de Metileno/farmacología , Sitios de Unión , Antivirales/farmacología
3.
Biochemistry (Mosc) ; 87(10): 1065-1083, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36273876

RESUMEN

Summarized results of investigation of regulation of electron transport and associated processes in the photosynthetic membrane using methods of mathematical and computer modeling carried out at the Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, are presented in this review. Detailed kinetic models of processes in the thylakoid membrane were developed using the apparatus of differential equations. Fitting of the model curves to the data of spectral measurements allowed us to estimate the values of parameters that were not determined directly in experiments. The probabilistic method of agent-based Monte Carlo modeling provides ample opportunities for studying dynamics of heterogeneous systems based on the rules for the behavior of individual elements of the system. Algorithms for simplified representation of Big Data make it possible to monitor changes in the photosynthetic apparatus in the course of culture growth in a photobioreactor and for the purpose of environmental monitoring. Brownian and molecular models describe movement and interaction of individual electron carrier proteins and make it possible to study electrostatic, hydrophobic, and other interactions leading to regulation of conformational changes in the reaction complexes. Direct multiparticle models explicitly simulate Brownian diffusion of the mobile protein carriers and their electrostatic interactions with multienzyme complexes both in solution and in heterogeneous interior of a biomembrane. The combined use of methods of kinetic and Brownian multiparticle and molecular modeling makes it possible to study the mechanisms of regulation of an integral system of electron transport processes in plants and algae at molecular and subcellular levels.


Asunto(s)
Fotosíntesis , Plantas , Humanos , Transporte de Electrón , Fotosíntesis/fisiología , Simulación por Computador , Complejos Multienzimáticos , Proteínas Portadoras , Modelos Biológicos
4.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35806316

RESUMEN

Electrostatics is an important part of virus life. Understanding the detailed distribution of charges over the surface of a virus is important to predict its interactions with host cells, antibodies, drugs, and different materials. Using a coarse-grained model of the entire viral envelope developed by D. Korkin and S.-J. Marrink's scientific groups, we created an electrostatic map of the external surface of SARS-CoV-2 and found a highly heterogeneous distribution of the electrostatic potential field of the viral envelope. Numerous negative patches originate mainly from negatively charged lipid domains in the viral membrane and negatively charged areas on the "stalks" of the spike (S) proteins. Membrane (M) and envelope (E) proteins with the total positive charge tend to colocalize with the negatively charged lipids. In the E protein pentamer exposed to the outer surface, negatively charged glutamate residues and surrounding lipids form a negative electrostatic potential ring around the channel entrance. We simulated the interaction of the antiviral octacationic photosensitizer octakis(cholinyl)zinc phthalocyanine with the surface structures of the entire model virion using the Brownian dynamics computational method implemented in ProKSim software (version r661). All mentioned negatively charged envelope components attracted the photosensitizer molecules and are thus potential targets for reactive oxygen generated in photosensitized reactions.


Asunto(s)
COVID-19 , SARS-CoV-2 , Antivirales/química , Sitios de Unión , Cationes , Humanos , Lípidos , Fármacos Fotosensibilizantes/química , Electricidad Estática , Virión
5.
Physiol Plant ; 165(3): 476-486, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29345315

RESUMEN

The development of high-performance photobioreactors equipped with automatic systems for non-invasive real-time monitoring of cultivation conditions and photosynthetic parameters is a challenge in algae biotechnology. Therefore, we developed a chlorophyll (Chl) fluorescence measuring system for the online recording of the light-induced fluorescence rise and the dark relaxation of the flash-induced fluorescence yield (Qa- - re-oxidation kinetics) in photobioreactors. This system provides automatic measurements in a broad range of Chl concentrations at high frequency of gas-tight sampling, and advanced data analysis. The performance of this new technique was tested on the green microalgae Chlamydomonas reinhardtii subjected to a sulfur deficiency stress and to long-term dark anaerobic conditions. More than thousand fluorescence kinetic curves were recorded and analyzed during aerobic and anaerobic stages of incubation. Lifetime and amplitude values of kinetic components were determined, and their dynamics plotted on heatmaps. Out of these data, stress-sensitive kinetic parameters were specified. This implemented apparatus can therefore be useful for the continuous real-time monitoring of algal photosynthesis in photobioreactors.


Asunto(s)
Clorofila/metabolismo , Fotobiorreactores/microbiología , Fotosíntesis/fisiología , Chlamydomonas reinhardtii/metabolismo , Fluorescencia , Cinética
6.
Physiol Plant ; 166(1): 320-335, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30740703

RESUMEN

Mechanisms of the complex formation between plastocyanin and cytochrome f in higher plants (Spinacia oleracea and Brassica rapa), green microalgae Chlamydomonas reinhardtii and two species of cyanobacteria (Phormidium laminosum and Nostoc sp.) were investigated using combined Brownian and molecular dynamics simulations and hierarchical cluster analysis. In higher plants and green algae, electrostatic interactions force plastocyanin molecule close to the heme of cytochrome f. In the subsequent rotation of plastocyanin molecule around the point of electrostatic contact in the vicinity of cytochrome f, copper (Cu) atom approaches cytochrome heme forming a stable configuration where cytochrome f molecule behaves as a rather rigid body without conformational changes. In Nostoc plastocyanin molecule approaches cytochrome f in a different orientation (head-on) where the stabilization of the plastocyanin-cytochrome f complex is accompanied by the conformational changes of the G188E189D190 loop that stabilizes the whole complex. In cyanobacterium P. laminosum, electrostatic preorientation of the approaching molecules was not detected, thus indicating that random motions rather than long-range electrostatic interactions are responsible for the proper mutual orientation. We demonstrated that despite the structural similarity of the investigated electron transport proteins in different photosynthetic organisms, the complexity of molecular mechanisms of the complex formation increases in the following sequence: non-heterocystous cyanobacteria - heterocystous cyanobacteria - green algae - flowering plants.


Asunto(s)
Chlorophyta/metabolismo , Cianobacterias/metabolismo , Citocromos f/metabolismo , Plastocianina/metabolismo , Transporte de Electrón , Oxidación-Reducción , Complejo de Proteína del Fotosistema I/metabolismo , Espectrometría de Fluorescencia
7.
Plants (Basel) ; 11(21)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36365263

RESUMEN

Dormancy is a physiological state that confers winter hardiness to and orchestrates phenological phase progression in temperate perennial plants. Weather fluctuations caused by climate change increasingly disturb dormancy onset and release in plants including tree crops, causing aberrant growth, flowering and fruiting. Research in this field suffers from the lack of affordable non-invasive methods for online dormancy monitoring. We propose an automatic framework for low-cost, long-term, scalable dormancy studies in deciduous plants. It is based on continuous sensing of the photosynthetic activity of shoots via pulse-amplitude-modulated chlorophyll fluorescence sensors connected remotely to a data processing system. The resulting high-resolution time series of JIP-test parameters indicative of the responsiveness of the photosynthetic apparatus to environmental stimuli were subjected to frequency-domain analysis. The proposed approach overcomes the variance coming from diurnal changes of insolation and provides hints on the depth of dormancy. Our approach was validated over three seasons in an apple (Malus × domestica Borkh.) orchard by collating the non-invasive estimations with the results of traditional methods (growing of the cuttings obtained from the trees at different phases of dormancy) and the output of chilling requirement models. We discuss the advantages of the proposed monitoring framework such as prompt detection of frost damage along with its potential limitations.

8.
Biophys Rev ; 14(4): 969-971, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36124263

RESUMEN

'Ecological photobiology' session of the Russian Photobiology Society 9th Congress was devoted to a wide range of problems related to the assessment of the environmental state by photobiological methods and included oral presentations and a poster session. A short survey of these presentations is given.

9.
Viruses ; 13(8)2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34452480

RESUMEN

We compared the electrostatic properties of the spike proteins (S-proteins) of three coronaviruses, SARS-CoV, MERS-CoV, and SARS-CoV-2, and their interactions with photosensitizers (PSs), octacationic octakis(cholinyl)zinc phthalocyanine (Zn-PcChol8+) and monocationic methylene blue (MB). We found a major common PS binding site at the connection of the S-protein stalk and head. The molecules of Zn-PcChol8+ and MB also form electrostatic encounter complexes with large area of negative electrostatic potential at the head of the S-protein of SARS-CoV-2, between fusion protein and heptad repeat 1 domain. The top of the SARS-CoV spike head demonstrates a notable area of electrostatic contacts with Zn-PcChol8+ and MB that corresponds to the N-terminal domain. The S-protein protomers of SARS-CoV-2 in "open" and "closed" conformations demonstrate different ability to attract PS molecules. In contrast with Zn-PcChol8+, MB possesses the ability to penetrate inside the pocket formed as a result of SARS-CoV-2 receptor binding domain transition into the "open" state. The existence of binding site for cationic PSs common to the S-proteins of SARS-CoV, SARS-CoV-2, and MERS-CoV creates prospects for the wide use of this type of PSs to combat the spread of coronaviruses.


Asunto(s)
Colina/metabolismo , Indoles/metabolismo , Isoindoles/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/química , Compuestos Organometálicos/metabolismo , Fármacos Fotosensibilizantes/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Compuestos de Zinc/metabolismo , Sitios de Unión , Indoles/química , Azul de Metileno/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Compuestos Organometálicos/química , Conformación Proteica , Dominios Proteicos , Subunidades de Proteína/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , SARS-CoV-2/química , Glicoproteína de la Espiga del Coronavirus/química , Electricidad Estática
10.
Cells ; 10(12)2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34944079

RESUMEN

Using a mathematical simulation approach, we studied the dynamics of the green microalga Chlorella vulgaris phosphate metabolism response to shortage and subsequent replenishing of inorganic phosphate in the medium. A three-pool interaction model was used to describe the phosphate uptake from the medium, its incorporation into the cell organic compounds, its storage in the form of polyphosphates, and culture growth. The model comprises a system of ordinary differential equations. The distribution of phosphorous between cell pools was examined for three different stages of the experiment: growth in phosphate-rich medium, incubation in phosphate-free medium, and phosphate addition to the phosphorus-starving culture. Mathematical modeling offers two possible scenarios for the appearance of the peak of polyphosphates (PolyP). The first scenario explains the accumulation of PolyP by activation of the processes of its synthesis, and the decline in PolyP is due to its redistribution between dividing cells during growth. The second scenario includes a hysteretic mechanism for the regulation of PolyP hydrolysis, depending on the intracellular content of inorganic phosphate. The new model of the dynamics of P pools in the cell allows one to better understand the phenomena taking place during P starvation and re-feeding of the P-starved microalgal cultures with inorganic phosphate such as transient PolyP accumulation. Biotechnological implications of the observed dynamics of the polyphosphate pool of the microalgal cell are considered. An approach enhancing the microalgae-based wastewater treatment method based on these scenarios is proposed.


Asunto(s)
Chlorella vulgaris/metabolismo , Fosfatos/metabolismo , Fósforo/deficiencia , Fósforo/farmacología , Recuento de Células , Células Cultivadas , Chlorella vulgaris/efectos de los fármacos , Chlorella vulgaris/crecimiento & desarrollo , Microalgas/efectos de los fármacos , Microalgas/metabolismo , Modelos Biológicos , Polifosfatos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA