Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Intern Med ; 291(1): 72-80, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34459525

RESUMEN

BACKGROUND: Emerging data support detectable immune responses for months after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination, but it is not yet established to what degree and for how long protection against reinfection lasts. METHODS: We investigated SARS-CoV-2-specific humoral and cellular immune responses more than 8 months post-asymptomatic, mild and severe infection in a cohort of 1884 healthcare workers (HCW) and 51 hospitalized COVID-19 patients. Possible protection against SARS-CoV-2 reinfection was analyzed by a weekly 3-month polymerase chain reaction (PCR) screening of 252 HCW that had seroconverted 7 months prior to start of screening and 48 HCW that had remained seronegative at multiple time points. RESULTS: All COVID-19 patients and 96% (355/370) of HCW who were anti-spike IgG positive at inclusion remained anti-spike IgG positive at the 8-month follow-up. Circulating SARS-CoV-2-specific memory T cell responses were detected in 88% (45/51) of COVID-19 patients and in 63% (233/370) of seropositive HCW. The cumulative incidence of PCR-confirmed SARS-CoV-2 infection was 1% (3/252) among anti-spike IgG positive HCW (0.13 cases per 100 weeks at risk) compared to 23% (11/48) among anti-spike IgG negative HCW (2.78 cases per 100 weeks at risk), resulting in a protective effect of 95.2% (95% CI 81.9%-99.1%). CONCLUSIONS: The vast majority of anti-spike IgG positive individuals remain anti-spike IgG positive for at least 8 months regardless of initial COVID-19 disease severity. The presence of anti-spike IgG antibodies is associated with a substantially reduced risk of reinfection up to 9 months following asymptomatic to mild COVID-19.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/diagnóstico , COVID-19/inmunología , Inmunidad Celular , Inmunidad Humoral , Inmunoglobulina G/inmunología , Reinfección , Adulto , Anticuerpos Antivirales/inmunología , Infecciones Asintomáticas , Prueba de Ácido Nucleico para COVID-19 , Prueba Serológica para COVID-19 , Femenino , Humanos , Inmunoglobulina G/sangre , Masculino , Células T de Memoria , Persona de Mediana Edad , Pandemias , SARS-CoV-2 , Factores de Tiempo
2.
Front Immunol ; 15: 1346749, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38558811

RESUMEN

Introduction: Several novel vaccine platforms aim at mucosal immunity in the respiratory tract to block SARS-CoV-2 transmission. Standardized methods for mucosal sample collection and quantification of mucosal antibodies are therefore urgently needed for harmonized comparisons and interpretations across mucosal vaccine trials and real-world data. Methods: Using commercial electrochemiluminescence antibody panels, we compared SARS-CoV-2 spike-specific IgA and IgG in paired saliva, nasal secretions, and serum from 1048 healthcare workers with and without prior infection. Results: Spike-specific IgA correlated well in nasal secretions and saliva (r>0.65, p<0.0001), but the levels were more than three-fold higher in nasal secretions as compared to in saliva (p<0.01). Correlations between the total population of spike-specific IgA and spike-specific secretory IgA (SIgA) were significantly stronger (p<0.0001) in nasal secretions (r=0.96, p<0.0001) as opposed to in saliva (r=0.77, p<0.0001), and spike-specific IgA correlated stronger (p<0.0001) between serum and saliva (r=0.73, p<0.001) as opposed to between serum and nasal secretions (r=0.54, p<0.001), suggesting transudation of monomeric spike specific IgA from the circulation to saliva. Notably, spike-specific SIgA had a markedly higher SARS-CoV-2 variant cross-binding capacity as compared to the total population of spike specific IgA and IgG in both nasal secretions, saliva and serum, (all p<0.0001), which emphasizes the importance of taking potential serum derived monomeric IgA into consideration when investigating mucosal immune responses. Discussion: Taken together, although spike-specific IgA can be reliably measured in both nasal secretions and saliva, our findings imply an advantage of higher levels and likely also a larger proportion of SIgA in nasal secretions as compared to in saliva. We further corroborate the superior variant cross-binding capacity of SIgA in mucosal secretions, highlighting the potential protective benefits of a vaccine targeting the upper respiratory tract.


Asunto(s)
COVID-19 , Vacunas , Humanos , Saliva , SARS-CoV-2 , Inmunoglobulina A Secretora , Inmunoglobulina G
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA