Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 312: 114914, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35339792

RESUMEN

Wetlands that are restored for carbon sequestration or created for water treatment are an important sources of greenhouse gases, especially methane. The emission of nitrous oxide (N2O) from these systems is often considered negligible due to the inundation and anerobic conditions that support complete denitrification. We used closed chamber method to analyze N2O fluxes over a long-term period across heterogeneous wetland ecosystem constructed for treating nitrate-rich agricultural runoff. Our results showed that the water depth and temperature were most important factors affecting high N2O emissions. The shallow areas where water depth was less than 9 cm created N2O hot spots that emitted 48.8% of the total wetlands annual emission while only covering 6% of the total area. The annual emission from shallow-water hot spots with dense helophytic vegetation was 4.85 ± 0.5 g N2O-N m-2 y-1 while it was only 0.37 ± 0.01 g N2O-N m-2 y-1 in deeper zones. While the water depth was the main factor for high N2O emissions, the temperatures increased the magnitude of the flux and therefore summer droughts and water drawdown created even larger hot spots. These results also suggest that IPCC benchmarks could underestimate N2O emission from shallow waterbodies. Thus, it is important that the shallow zones and water level drawdown in the created or restored wetlands is avoided to minimize the N2O flux.


Asunto(s)
Óxido Nitroso , Humedales , Dióxido de Carbono/análisis , Ecosistema , Monitoreo del Ambiente , Metano/análisis , Óxido Nitroso/análisis
2.
J Environ Manage ; 299: 113562, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34425499

RESUMEN

The concentration of nitrous oxide (N2O), an ozone-depleting greenhouse gas, is rapidly increasing in the atmosphere. Most atmospheric N2O originates in terrestrial ecosystems, of which the majority can be attributed to microbial cycling of nitrogen in agricultural soils. Here, we demonstrate how the abundance of nitrogen cycling genes vary across intensively managed agricultural fields and adjacent restored wetlands in the Sacramento-San Joaquin Delta in California, USA. We found that the abundances of nirS and nirK genes were highest at the intensively managed organic-rich cornfield and significantly outnumber any other gene abundances, suggesting very high N2O production potential. The quantity of nitrogen transforming genes, particularly those responsible for denitrification, nitrification and DNRA, were highest in the agricultural sites, whereas nitrogen fixation and ANAMMOX was strongly associated with the wetland sites. Although the abundance of nosZ genes was also high at the agricultural sites, the ratio of nosZ genes to nir genes was significantly higher in wetland sites indicating that these sites could act as a sink of N2O. These findings suggest that wetland restoration could be a promising natural climate solution not only for carbon sequestration but also for reduced N2O emissions.


Asunto(s)
Microbiota , Humedales , Desnitrificación , Nitrógeno , Ciclo del Nitrógeno , Óxido Nitroso/análisis , Suelo , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA