Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Water Environ Res ; 90(1): 42-47, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28327257

RESUMEN

Extracellular polymeric substances (EPS) and solids concentrations in samples from the Interchange Bioreactor (IBR), and return activated sludge (RAS) from Cannibal facilities having low and high sludge yields, were analyzed to understand the mechanisms behind low sludge production. Low sludge yields correlated to more EPS degradation, higher concentrations of iron, and reducing conditions in the IBR. In the low yield facilities, iron was reduced when the RAS passed through the anaerobic and reducing conditions of the IBR, and this led to more EPS solubilization and degradation. This "futile cycle" of EPS production and degradation appears to may have been most responsible for reducing sludge yields.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Reactores Biológicos , Purificación del Agua
2.
Environ Sci Technol ; 47(3): 1565-72, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23298383

RESUMEN

We evaluated a strategy for achieving complete reduction of perchlorate (ClO(4)(-)) in the presence of much higher concentrations of sulfate (SO(4)(2-)) and nitrate (NO(3)(-)) in a hydrogen-based membrane biofilm reactor (MBfR). Full ClO(4)(-) reduction was achieved by using a two-stage MBfR with controlled NO(3)(-) surface loadings to each stage. With an equivalent NO(3)(-) surface loading larger than 0.65 ± 0.04 g N/m(2)-day, the lead MBfR removed about 87 ± 4% of NO(3)(-) and 30 ± 8% of ClO(4)(-). This decreased the equivalent surface loading of NO(3)(-) to 0.34 ± 0.04-0.53 ± 0.03 g N/m(2)-day for the lag MBfR, in which ClO(4)(-) was reduced to nondetectable. SO(4)(2-) reduction was eliminated without compromising full ClO(4)(-) reduction using a higher flow rate that gave an equivalent NO(3)(-) surface loading of 0.94 ± 0.05 g N/m(2)-day in the lead MBfR and 0.53 ± 0.03 g N/m(2)-day in the lag MBfR. Results from qPCR and pyrosequencing showed that the lead and lag MBfRs had distinctly different microbial communities when SO(4)(2-) reduction took place. Denitrifying bacteria (DB), quantified using the nirS and nirK genes, dominated the biofilm in the lead MBfR, but perchlorate-reducing bacteria (PRB), quantified using the pcrA gene, became more important in the lag MBfR. The facultative anaerobic bacteria Dechloromonas, Rubrivivax, and Enterobacter were dominant genera in the lead MBfR, where their main function was to reduce NO(3)(-). With a small NO(3)(-) surface loading and full ClO(4)(-) reduction, the dominant genera shifted to ClO(4)(-)-reducing bacteria Sphaerotilus, Rhodocyclaceae, and Rhodobacter in the lag MBfR.


Asunto(s)
Biopelículas , Reactores Biológicos/microbiología , Hidrógeno/farmacología , Membranas Artificiales , Nitratos/aislamiento & purificación , Percloratos/aislamiento & purificación , Sulfatos/aislamiento & purificación , Bacterias/efectos de los fármacos , Bacterias/genética , Biodegradación Ambiental/efectos de los fármacos , Biopelículas/efectos de los fármacos , Electrones
3.
Water Sci Technol ; 65(1): 100-4, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22173412

RESUMEN

The H(2)-based membrane biofilm reactor was used to remove nitrate from synthetic ion-exchange brine at NaCl concentrations from ∼3 to 30 g/L. NaCl concentrations below 20 g/L did not affect the nitrate removal flux as long as potassium was available to generate osmotic tolerance for high sodium, the H(2) pressure was adequate, and membrane fouling was eliminated. Operating pHs of 7-8 and periodic citric acid washes controlled membrane fouling and enabled reactor operation for 650 days. At 30 psig H(2) and high nitrate loading rates of 15 to 80 g/m(2) d, nitrate removal fluxes ranged from 2.5 to ∼6 g/m(2) d, which are the highest fluxes observed when treating 30 g/L IX brine. However, percent removals were low, and the H(2) pressure probably limited the removal flux.


Asunto(s)
Reactores Biológicos , Nitratos/metabolismo , Cloruro de Sodio/farmacología , Contaminantes Químicos del Agua/metabolismo , Purificación del Agua/métodos , Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Biopelículas , Desnitrificación , Hidrógeno , Concentración de Iones de Hidrógeno , Residuos Industriales , Intercambio Iónico , Membranas Artificiales , Polietileno , Poliuretanos , Potasio/química , Sales (Química)
4.
Water Sci Technol ; 63(12): 2923-8, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22049720

RESUMEN

Increased tightening of air regulations is leading more electric utilities to install flue gas desulfurization (FGD) systems. These systems produce brine containing high concentrations of nitrate, nitrite, and selenate which must be removed before discharge. The H2-based membrane biofilm reactor (MBfR) was shown to consistently remove nitrate, nitrite, and selenate at high efficiencies. The maximum selenate removal flux reached 362 mgSe m(-2)d(-1) and was higher than that observed in earlier research, which shows continual improvement of the biofilm for selenate reduction. A low pH of 6.8 inhibited precipitation when treating actual FGD brine, yet did not inhibit removal. SO4(2-) was not removed and therefore did not compete with nitrate, nitrite, and selenate reduction for the available H2.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Reactores Biológicos/microbiología , Membranas Artificiales , Nitratos/aislamiento & purificación , Compuestos de Selenio/aislamiento & purificación , Dióxido de Azufre/aislamiento & purificación , Purificación del Agua/métodos , Biodegradación Ambiental , Diseño de Equipo , Concentración de Iones de Hidrógeno , Modelos Teóricos , Oxidación-Reducción , Ácido Selénico , Purificación del Agua/instrumentación
5.
Virulence ; 12(1): 1377-1387, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34008466

RESUMEN

Phage-inspired antibacterial discovery is a new approach that recruits phages in search for antibacterials with new molecular targets, in that phages are the biological entities well adapted to hijack host bacterial physiology in favor of their own thrive. We previously observed that phage-mediated twitching motility inhibition was effective to control the acute infections caused by Pseudomonas aeruginosa and that the motility inhibition was attributed to the delocalization of PilB, the type IV pilus (TFP) assembly ATPase by binding of the 136-amino acid (aa) phage protein, Tip. Here, we created a series of truncated and point-mutant Tip proteins to identify the critical residues in the Tip bioactivity: N-terminal 80-aa residues were dispensable for the Tip activity; we identified that Asp82, Leu84, and Arg85 are crucial in the Tip function. Furthermore, a synthetic 15-aa peptide (P1) that corresponds to Leu73 to Ala87 is shown to suffice for PilB delocalization, twitching inhibition, and virulence attenuation upon exogenous administration. The transgenic flies expressing the 15-aa peptide were resistant to P. aeruginosa infections as well. Taken together, this proof-of-concept study reveals a new antipathogenic peptide hit targeting bacterial motility and provides an insight into antibacterial discovery targeting TFP assembly.


Asunto(s)
Antibacterianos/farmacología , Bacteriófagos , Fimbrias Bacterianas , Péptidos/farmacología , Animales , Animales Modificados Genéticamente , Proteínas Bacterianas , Drosophila melanogaster , Proteínas Fimbrias/genética , Pseudomonas aeruginosa
6.
Virology ; 561: 6-16, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34089997

RESUMEN

Based on the previously reported 13-residue antibacterial peptide analog, brevinin-1EMa (FLGWLFKVASKVL, peptide B), we attempted to design a novel class of antiviral peptides. For this goal, we synthesized three peptides with different stapling positions (B-2S, B-8S, and B-5S). The most active antiviral peptide with the specific stapling position (B-5S) was further modified in combination with either cysteine (B-5S3C, B-5S7C, and B-5S10C) or hydrophilic amino acid substitution (Bsub and Bsub-5S). Overall, B, B-5S, and Bsub-5S peptides showed superior antiviral activities against enveloped viruses such as retrovirus, lentivirus, hepatitis C virus, and herpes simplex virus with EC50 values of 1-5 µM. Murine norovirus, a non-enveloped virus, was not susceptible to the virucidal actions of these peptides, suggesting the virus membrane disruption as their main antiviral mechanisms of action. We believe that these three novel peptides could serve as promising candidates for further development of membrane-targeting antiviral drugs in the future.


Asunto(s)
Antivirales/farmacología , Canales Iónicos/química , Canales Iónicos/farmacología , Péptidos/farmacología , Internalización del Virus/efectos de los fármacos , Virus/efectos de los fármacos , Antivirales/química , Antivirales/metabolismo , Bacterias/efectos de los fármacos , Línea Celular , Diseño de Fármacos , Hepacivirus/efectos de los fármacos , Hepacivirus/fisiología , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 1/fisiología , Humanos , Canales Iónicos/metabolismo , Lentivirus/efectos de los fármacos , Lentivirus/fisiología , Pruebas de Sensibilidad Microbiana , Norovirus/efectos de los fármacos , Norovirus/fisiología , Péptidos/química , Péptidos/metabolismo , Retroviridae/efectos de los fármacos , Retroviridae/fisiología , Fenómenos Fisiológicos de los Virus
7.
Antioxid Redox Signal ; 34(6): 442-451, 2021 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-32370551

RESUMEN

Aims: Polymyxin B (PMB) is known to require reactive oxygen species (ROS) for its bactericidal activity, but the mechanism of PMB resistance in various Pseudomonas aeruginosa strains has been poorly understood. This study examined the role of nitrate respiration (NR) of some P. aeruginosa strains in the PMB resistance. Results: We observed that the minimum inhibitory concentration (MIC) value of PMB against P. aeruginosa PA14 was eightfold reduced (from 2.0 to 0.25 µg/mL) by agitation, but not against P. aeruginosa PAO1 (from 2.0 to 1.0 µg/mL). Transcriptomic and phenotypic analyses using both strains and their NR mutants revealed that the higher NR in PAO1 than in PA14 accounted for the higher MIC value (i.e., PMB resistance) of PAO1, which was sufficient to compromise the antibacterial activity of PMB in Drosophila infections. We also confirmed the contribution of the NR to the PMB resistance is independent of the major catalase (KatA), suggesting that the NR might affect the ROS generation rather than the ROS disintegration. Furthermore, this PMB resistance was relatively common among clinical P. aeruginosa isolates and correlated with higher NR in those strains. Innovation and Conclusion: These results suggest P. aeruginosa strains could display intrinsic resistance to antibiotics in clinical settings and that NR is a crucial factor in the intrinsic antibiotic resistance, and also provide an insight into another key target for successful antibiotic treatment of P. aeruginosa infections. Antioxid. Redox Signal. 34, 442-451.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Nitratos/metabolismo , Polimixina B/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/metabolismo , Especies Reactivas de Oxígeno/metabolismo
8.
J Microbiol ; 58(1): 61-66, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31898254

RESUMEN

Drug repositioning, the approach to explore existing drugs for use in new therapeutic indications, has emerged as an alternative drug development strategy. In this study, we found that a mucolytic drug, N-acetylcysteine (NAC) showed antibacterial activity against Vibrio cholerae. NAC can provide acid stress that selectively inhibited the growth of V. cholerae among other bacterial pathogens. To address the antibacterial mechanism of NAC against V. cholerae, six acr (acetylcys-teine-resistant) mutants were isolated from 3,118 random transposon insertion clones. The transposon insertion sites of the six mutants were mapped at the five genes. All these mutants did not display NAC resistance under acidic conditions, despite their resistance to NAC under alkaline conditions, indicating that the NAC resistance directed by the acr mutations was independent of the unusual pH-sensitivity of V. cholerae. Furthermore, all these mutants displayed attenuated virulence and reduced biofilm formation, suggesting that the acr genes are required for pathogenesis of V. cholerae. This study validates the relevance of drug repositioning for antibacterials with new modes of action and will provide an insight into a novel antibacterial therapy for V. cholerae infections to minimize side effects and resistance emergence.


Asunto(s)
Acetilcisteína/farmacología , Antibacterianos/farmacología , Cólera , Reposicionamiento de Medicamentos , Vibrio cholerae , Virulencia/efectos de los fármacos , Cólera/tratamiento farmacológico , Cólera/microbiología , Vibrio cholerae/efectos de los fármacos , Vibrio cholerae/patogenicidad
9.
J Microbiol ; 57(8): 704-710, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31187416

RESUMEN

KatA is the major catalase required for hydrogen peroxide (H2O2) resistance and acute virulence in Pseudomonas aeruginosa PA14, whose transcription is governed by its dual promoters (katAp1 and katAp2). Here, we observed that KatA was not required for acute virulence in another wild type P. aeruginosa strain, PAO1, but that PAO1 exhibited higher KatA expression than PA14 did. This was in a good agreement with the observation that PAO1 was more resistant than PA14 to H2O2 as well as to the antibiotic peptide, polymyxin B (PMB), supposed to involve reactive oxygen species (ROS) for its antibacterial activity. The higher KatA expression in PAO1 than in PA14 was attributed to both katAp1 and katAp2 transcripts, as assessed by S1 nuclease mapping. In addition, it was confirmed that the PMB resistance is attributed to both katAp1 and katAp2 in a complementary manner in PA14 and PAO1, by exploiting the promoter mutants for each -10 box (p1m, p2m, and p1p2m). These results provide an evidence that the two widely used P. aeruginosa strains display different virulence mechanisms associated with OxyR and Anr, which need to be further characterized for better understanding of the critical virulence pathways that may differ in various P. aeruginosa strains.


Asunto(s)
Proteínas Bacterianas/genética , Catalasa/genética , Regulación Bacteriana de la Expresión Génica , Peróxido de Hidrógeno/metabolismo , Polimixina B/metabolismo , Pseudomonas aeruginosa/enzimología , Antibacterianos/metabolismo , Regiones Promotoras Genéticas , Pseudomonas aeruginosa/patogenicidad , Virulencia
10.
Viruses ; 11(3)2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30889807

RESUMEN

Despite the successful use of antibacterials, the emergence of multidrug-resistant bacteria has become a serious threat to global healthcare. In this era of antibacterial crisis, bacteriophages (phages) are being explored as an antibacterial treatment option since they possess a number of advantages over conventional antibacterials, especially in terms of specificity and biosafety; phages specifically lyse target bacteria while not affecting normal and/or beneficial bacteria and display little or no toxicity in that they are mainly composed of proteins and nucleic acids, which consequently significantly reduces the time and cost involved in antibacterial development. However, these benefits also create potential issues regarding antibacterial spectra and host immunity; the antibacterial spectra being very narrow when compared to those of chemicals, with the phage materials making it possible to trigger host immune responses, which ultimately disarm antibacterial efficacy upon successive treatments. In addition, phages play a major role in horizontal gene transfer between bacterial populations, which poses serious concerns for the potential of disastrous consequences regarding antibiotic resistance. Fortunately, however, recent advancements in synthetic biology tools and the speedy development of phage genome resources have allowed for research on methods to circumvent the potentially disadvantageous aspects of phages. These novel developments empower research which goes far beyond traditional phage therapy approaches, opening up a new chapter for phage applications with new antibacterial platforms. Herein, we not only highlight the most recent synthetic phage engineering and phage product engineering studies, but also discuss a new proof-of-concept for phage-inspired antibacterial design based on the studies undertaken by our group.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacteriófagos/química , Animales , Antibacterianos/química , Bacterias/virología , Infecciones Bacterianas/terapia , Bacteriófagos/genética , Farmacorresistencia Bacteriana Múltiple , Ingeniería Genética , Variación Genética , Humanos , Ratones , Terapia de Fagos/efectos adversos , Biología Sintética
11.
Front Microbiol ; 10: 350, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30858845

RESUMEN

YM155 is a clinically evaluated anticancer with a fused naphthoquinone-imidazolium scaffold. In this study, we demonstrated that based on weak or cryptic antibacterial activity of YM155 against methicillin-resistant Staphylococcus aureus (MRSA) (MIC of 50 µg/ml), some congeneric compounds with short alkyl chains (e.g., c5 with a hexyl chain) at the N3 position of the scaffold, displayed more potent antibacterial activity against MRSA (MIC of 3.13 µg/ml), which is in a clinically achievable range. Their antibacterial activity was evident against Gram-negative bacteria, only in the presence of the outer membrane-permeabilizing agent, polymyxin B. The antibacterial efficacy of c5 was confirmed using the Drosophila systemic infection model. We also characterized five spontaneous c5-resistant MRSA mutants that carry mutations in the ubiE gene, for quinone metabolism and respiratory electron transfer, and subsequently exhibited reduced respiration activity. The antibacterial activity of c5 was compromised either by an antioxidant, N-acetylcysteine, or in an anaerobic condition. These suggest that the antibacterial mechanism of c5 involves the generation of reactive oxygen species (ROS), presumably during respiratory electron transport. This study provides an insight into "drug redirecting," through a chemical modification, based on an ROS-generating pharmacophore.

12.
J Microbiol ; 57(3): 203-212, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30806977

RESUMEN

Oxidative stress arises from an imbalance between the excessive accumulation of reactive oxygen species (ROS) and a cell's capability to readily detoxify them. Although ROS are spontaneously generated during the normal oxygen respiration and metabolism, the ROS generation is usually augmented by redox-cycling agents, membrane disrupters, and bactericidal antibiotics, which contributes their antimicrobial bioactivity. It is noted that all the bacteria deploy an arsenal of inducible antioxidant defense systems to cope with the devastating effect exerted by the oxidative stress: these systems include the antioxidant effectors such as catalases and the master regulators such as OxyR. The oxidative stress response is not essential for normal growth, but critical to survive the oxidative stress conditions that the bacterial pathogens may encounter due to the host immune response and/or the antibiotic treatment. Based on these, we here define the ROS-inspired antibacterial strategies to enhance the oxidative stress of ROS generation and/or to compromise the bacterial response of ROS detoxification, by delineating the ROSgenerating antimicrobials and the core concept of the bacterial response against the oxidative stress.


Asunto(s)
Antibacterianos/farmacología , Antioxidantes/metabolismo , Bacterias/efectos de los fármacos , Fenómenos Fisiológicos Bacterianos , Benzoquinonas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Antibacterianos/química , Benzoquinonas/química , Catalasa/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Estrés Fisiológico
13.
Sci Rep ; 6: 31185, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27491679

RESUMEN

KatA is the major catalase required for hydrogen peroxide (H2O2) resistance and acute virulence in Pseudomonas aeruginosa PA14, whose transcription is driven from the promoter (katAp1) located at 155 nucleotide (nt) upstream of the start codon. Here, we identified another promoter (katAp2), the +1 of which was mapped at the 51 nt upstream of the start codon, which was responsible for the basal transcription during the planktonic culture and down-regulated upon H2O2 treatment under the control by the master regulator of anaerobiosis, Anr. To dissect the roles of the dual promoters in conditions involving KatA, we created the promoter mutants for each -10 box (p1m, p2m, and p1p2m) and found that katAp1 is required for the function of KatA in the logarithmic growth phase during the planktonic culture as well as in acute virulence, whereas katAp2 is required for the function of KatA in the stationary phase as well as in the prolonged biofilm culture. This dismantling of the dual promoters of katA sheds light on the roles of KatA in stress resistance in both proliferative and growth-restrictive conditions and thus provides an insight into the regulatory impacts of the major catalase on the survival strategies of P. aeruginosa.


Asunto(s)
Proteínas Bacterianas/genética , Catalasa/genética , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica/genética , Regiones Promotoras Genéticas , Pseudomonas aeruginosa/genética , Anaerobiosis , Codón Iniciador/genética , Peróxido de Hidrógeno/farmacología , Mutación , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/patogenicidad , Virulencia/genética
14.
J Microbiol ; 52(6): 515-20, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24871978

RESUMEN

Temperate siphophages (MP29, MP42, and MP48) were isolated from the culture supernatant of clinical Pseudomonas aeruginosa isolates. The complete nucleotide sequences and annotation of the phage genomes revealed the overall synteny to the known temperate P. aeruginosa phages such as MP22, D3112, and DMS3. Genome-level sequence analysis showed the conservation of both ends of the linear genome and the divergence at the previously identified dissimilarity regions (R1 to R9). Protein sequence alignment of the c repressor (ORF1) of each phage enabled us to divide the six phages into two groups: D3112 group (D3112, MP29, MP42, and MP48) and MP22 group (MP22 and DMS3). Superinfection exclusion was observed between the phages belonging to the same group, which was mediated by the specific interaction between the c repressor and the cognate operator. Based on these, we suggest that the temperate siphophages prevalent in the clinical strains of P. aeruginosa represent at least two distinct heteroimmunity groups.


Asunto(s)
Fagos Pseudomonas/inmunología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/inmunología , Sobreinfección/inmunología , Pseudomonas aeruginosa/virología
15.
Water Res ; 54: 115-22, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24565802

RESUMEN

We studied the performance of a pilot-scale membrane biofilm reactor (MBfR) treating groundwater containing four electron acceptors: nitrate (NO3(-)), perchlorate (ClO4(-)), sulfate (SO4(2-)), and oxygen (O2). The treatment goal was to remove ClO4(-) from ∼200 µg/L to less than 6 µg/L. The pilot system was operated as two MBfRs in series, and the positions of the lead and lag MBfRs were switched regularly. The lead MBfR removed at least 99% of the O2 and 63-88% of NO3(-), depending on loading conditions. The lag MBfR was where most of the ClO4(-) reduction occurred, and the effluent ClO4(-) concentration was driven to as low as 4 µg/L, with most concentrations ≤10 µg/L. However, SO4(2-) reduction occurred in the lag MBfR when its NO3(-) + O2 flux was smaller than ∼0.18 g H2/m(2)-d, and this was accompanied by a lower ClO4(-) flux. We were able to suppress SO4(2-) reduction by lowering the H2 pressure and increasing the NO3(-) + O2 flux. We also monitored the microbial community using the quantitative polymerase chain reaction targeting characteristic reductase genes. Due to regular position switching, the lead and lag MBfRs had similar microbial communities. Denitrifying bacteria dominated the biofilm when the NO3(-) + O2 fluxes were highest, but sulfate-reducing bacteria became more important when SO4(2-) reduction was enhanced in the lag MBfR due to low NO3(-) + O2 flux. The practical two-stage strategy to achieve complete ClO4(-) and NO3(-) reduction while suppressing SO4(2-) reduction involved controlling the NO3(-) + O2 surface loading between 0.18 and 0.34 g H2/m(2)-d and using a low H2 pressure in the lag MBfR.


Asunto(s)
Biopelículas , Reactores Biológicos , Electrones , Membranas Artificiales , Purificación del Agua/instrumentación , Purificación del Agua/métodos , Bacterias/crecimiento & desarrollo , Nitratos/aislamiento & purificación , Oxígeno/aislamiento & purificación , Percloratos/aislamiento & purificación , Proyectos Piloto , Sulfatos/aislamiento & purificación , Factores de Tiempo , Eliminación de Residuos Líquidos
16.
Bioresour Technol ; 102(10): 6360-4, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21454073

RESUMEN

The H(2)-based membrane biofilm reactor (MBfR) was shown to consistently remove nitrate, nitrite, and selenate at high efficiencies from flue-gas desulfurization brine. Selenate was removed to <50 ppb which is the National Pollutant Discharge Elimination System (NPDES) criteria for the brine to be released into the environment. When selenate was removed to <50 ppb, nitrate and nitrite were still present in the mg/L range which suggests that selenate is able to be secondarily reduced to low levels when nitrate and nitrite serve as the main electron acceptors for bacterial growth. SO(4)(2-) was not removed and therefore did not compete with nitrate and selenate reduction for the available H(2).


Asunto(s)
Biopelículas , Reactores Biológicos , Gases/química , Hidrógeno/química , Membranas Artificiales , Compuestos de Selenio/aislamiento & purificación , Azufre/aislamiento & purificación , Límite de Detección , Ácido Selénico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA