Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 52, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38183478

RESUMEN

For a better understanding of the distribution of depth-dependent electrochemically active bacteria at in the anode zone, a customized system in a microbial fuel cell (MFC) packed with granular activated carbon (GAC) was developed and subsequently optimized via electrochemical tests. The constructed MFC system was sequentially operated using two types of matrice solutions: artificially controlled compositions (i.e., artificial wastewater, AW) and solutions obtained directly from actual sewage-treating municipal plants (i.e., municipal wastewater, MW). Notably, significant difference(s) of system efficiencies between AW or MW matrices were observed via performance tests, in that the electricity production capacity under MW matrices is < 25% that of the AW matrices. Interestingly, species of Escherichia coli (E. coli) sampled from the GAC bed (P1: deeper region in GAC bed, P2: shallow region of GAC near electrolytes) exhibited an average relative abundance of 75 to 90% in AW and a relative abundance of approximately 10% in MW, while a lower relative abundance of E. coli was found in both the AW and MW anolyte samples (L). Moreover, similar bacterial communities were identified in samples P1 and P2 for both the AW and MW solutions, indicating a comparable distribution of bacterial communities over the anode area. These results provide new insights into E. coli contribution in power production for the GAC-packed MFC systems (i.e., despite the low contents of Geobacter (> 8%) and Shewanella (> 1%)) for future applications in sustainable energy research. KEY POINTS: • A microbial community analysis for depth-dependence in biofilm was developed. • The system was operated with two matrices; electrochemical performance was assessed. • E. coli spp. was distinctly found in anode zone layers composed of activated carbon.


Asunto(s)
Fuentes de Energía Bioeléctrica , Prevalencia , Carbón Orgánico , Escherichia coli/genética , Aguas Residuales , Biopelículas
2.
J Environ Manage ; 335: 117493, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36822047

RESUMEN

Despite the identification of numerous bioplastic-degrading bacteria, the inconsistent rate of bioplastic degradation under differing cultivation conditions limits the intercomparison of results on biodegradation kinetics. In this study, we isolated a poly (Ɛ-caprolactone) (PCL)-degrading bacterium from a plastic-contaminated landfill and determined the principle-based biodegradation kinetics in a confined model system of varying cultivation conditions. Bacterial degradation of PCL films synthesized by different polymer number average molecular weights (Mn) and concentrations (% w/v) was investigated using both solid and liquid media at various temperatures. As a result, the most active gram-negative bacterial strain at ambient temperature (28 °C), designated CY2-9, was identified as Aquabacterium sp. Based on 16 S rRNA gene analysis. A clear zone around the bacterial colony was apparently exhibited during solid cultivation, and the diameter sizes increased with incubation time. During biodegradation processes in the PCL film, the thermal stability declined (determined by TGA; weight changes at critical temperature), whereas the crystalline proportion increased (determined by DSC; phase transition with temperature increment), implying preferential degradation of the amorphous region in the polymer structure. The surface morphologies (determined by SEM; electron optical system) were gradually hydrolyzed, creating destruction patterns as well as alterations in functional groups on film surfaces (determined by FT-IR; infrared spectrum of absorption or emission). In the kinetic study based on the weight loss of the PCL film (4.5 × 104 Da, 1% w/v), ∼1.5 (>±0.1) × 10-1 day-1 was obtained from linear regression for both solid and liquid media cultivation at 28 °C. The biodegradation efficiencies increased proportionally by a factor of 2.6-7.9, depending on the lower polymer number average molecular weight and lower concentration. Overall, our results are useful for measuring and/or predicting the degradation rates of PCL films by microorganisms in natural environments.


Asunto(s)
Plásticos , Poliésteres , Poliésteres/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Cinética , Polímeros , Bacterias/metabolismo
3.
Mol Carcinog ; 56(6): 1620-1629, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28112443

RESUMEN

Colorectal cancer (CRC) is one of the most common cancers and has a high rate of morbidity and mortality worldwide. Very-low-density-lipoprotein receptor (VLDLR), a member of the low-density-lipoprotein receptor (LDLR) superfamily, is a multifunctional receptor that regulates cellular signaling by binding numerous ligands. Several studies reported the altered expression of VLDLR and suggested that VLDLR may play a critical role in tumor development by affecting cell proliferation and metastasis. However, the function of VLDLR and regulation of its expression by miRNAs have not been investigated in CRC. In the present study, we investigated the expression of VLDLR in CRC patients and found it to be significantly decreased in tumors in comparison with paired adjacent non-tumor tissues. Moreover, VLDLR over-expression inhibited the proliferation and migration of CRC cells. We also found that VLDLR expression was negatively regulated by miR-200c in CRC cells and that their expression levels were inversely correlated in CRC patients. These data suggest that VLDLR down-regulation mediated by the increased expression of miR-200c may be involved in the development of CRC.


Asunto(s)
Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Receptores de LDL/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Colon/metabolismo , Colon/patología , Neoplasias Colorrectales/patología , Regulación hacia Abajo , Humanos , Recto/metabolismo , Recto/patología
4.
J Cell Physiol ; 230(9): 2075-85, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25639665

RESUMEN

Hairless (HR) has been shown to regulate hair follicle (HF) morphogenesis and hair cycling. The Hr mutant hair loss mouse referred to as "hairpoor" (Hr(Hp)) displays overexpression of the HR protein through translational derepression. In this study, we found that 64 miRNAs were differentially expressed between the skin of Hr(Hp)/Hr(Hp) and wild type mice at P7 using miRNA-microarray analysis and miR-31 displayed the most reduced expression in Hr(Hp)/Hr(Hp) skin. In vivo observation and investigation using an in vitro reporter expression system revealed that miR-31 and pri-miR-31 were consistently down-regulated in the HR over-expressed condition. In addition, we found that the transforming growth factor ß2 (Tgf-ß2), a known catagen inducer, is the putative target of miR-31. Furthermore, Tgf-ß2 level was also increased in HR over-expressed keratinocyte and Hr(Hp)/Hr(Hp) mice. These study results suggest that HR controls Tgf-ß2 expression via regulation of miR-31, thus causing abnormal hair cycle in Hr(Hp)/Hr(Hp) mice.


Asunto(s)
Folículo Piloso/crecimiento & desarrollo , MicroARNs/biosíntesis , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta2/biosíntesis , Animales , Apoptosis/genética , Regulación del Desarrollo de la Expresión Génica , Folículo Piloso/metabolismo , Queratinocitos/metabolismo , Ratones , MicroARNs/genética , Morfogénesis/genética , Análisis de Secuencia por Matrices de Oligonucleótidos
5.
J Hazard Mater ; 478: 135473, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39151358

RESUMEN

Widespread pesticide use in agriculture is a major source of soil pollution, driving biodiversity loss and posing serious threads to human health. The recalcitrant nature of most of these pesticides demands for effective remediation strategies. In this study, we assess the ability of soil microbial fuel cell (SMFC) technology to bioremediate soil polluted by the model pesticide atrazine. To elucidate the degradation mechanism and consequently define effective implementation strategies, we provide the first comprehensive investigation of the SMFC performance, in which the monitoring of the electrochemical performance of the system is combined with Quadrupole Time-of-Flight (QTOF) mass spectrometry and microbial analyses. Our results show that, while both SMFC and natural attenuation lead to a reduction on atrazine levels, the SMFC modulates the activity of different microbial pathways. As a result, atrazine degradation by natural attenuation leads to high levels of deisoproylatrazine (DIPA), a very toxic degradation metabolite, while DIPA levels in soil treated by SMFC remain comparatively low. The beta diversity and differential abundance analyses revealed how the microbial community evolves over time in the SMFCs degrading atrazine, demonstrating the enrichment of electroactive taxa on the anode, and the enrichment of a mixture of electroactive and atrazine-degrading taxa at the cathode. The detection and taxonomic classification of peripheral atrazine degrading genes, atzA, atzB and atzC, was carried out in combination with the differential abundance analysis. Results revealed that these genes are likely harboured by members of the order Rhizobiales enriched at the cathode, thus promoting atrazine degradation via the conversion of hydroxyatrazine (HA) into N-isopropylammelide (NIPA), as confirmed by mass spectrometry data. Overall, the comprehensive approach adopted in this work, provides fundamental insights into the degradation pathways of atrazine in soil by SMFC technology, which is critical for practical applications, thus suggesting an effective approach to advance research in the field.


Asunto(s)
Atrazina , Biodegradación Ambiental , Fuentes de Energía Bioeléctrica , Herbicidas , Microbiología del Suelo , Contaminantes del Suelo , Atrazina/metabolismo , Contaminantes del Suelo/metabolismo , Herbicidas/metabolismo , Herbicidas/química
6.
J Biol Chem ; 287(20): 16681-8, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22442153

RESUMEN

The Hairless (Hr), a transcription factor, is expressed in the suprabasal cell layer of the interfollicular epidermis and the lower portion of the hair follicle epithelium, where its expression is dependent on the hair cycle. Recently, we reported a new Hr mutant mouse, Hr(Hp), in which the hairless protein (HR) was overexpressed. In this study, we documented abnormal formation of inner root sheath (IRS), suppressed expression of Dlx3, and IRS keratins in the Hr(Hp)/Hr(Hp) skin. We also found that HR down-regulated Dlx3 mRNA expression through suppression of Dlx3 promoter activity. In addition, we showed that Dlx3 regulated the expression of IRS keratins. Our results demonstrate that regulation of Dlx3 by HR affects the IRS keratin expression, thus modulating the formation of IRS of hair follicle.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Folículo Piloso/metabolismo , Proteínas de Homeodominio/biosíntesis , Queratinas/biosíntesis , Factores de Transcripción/biosíntesis , Factores de Transcripción/metabolismo , Animales , Proteínas de Homeodominio/genética , Queratinas/genética , Ratones , Ratones Pelados , Factores de Transcripción/genética
7.
J Invertebr Pathol ; 114(3): 277-84, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24018168

RESUMEN

The oyster ovarian parasite Marteilioides chungmuensis has been reported from Korea and Japan, damaging the oyster industries. Recently, Marteilioides-like organisms have been identified in other commercially important marine bivalves. In this study, we surveyed Marteilioides infection in the Manila clam Ruditapes philippinarum, Suminoe oyster Crassostrea ariakensis, and Pacific oyster Crassostrea gigas, using histology and Marteilioides-specific small subunit (SSU) rDNA PCR. The SSU rDNA sequence of M. chungmuensis (1716 bp) isolated from C. gigas in Tongyoung bay was 99.9% similar to that of M. chungmuensis reported in Japan. Inclusions of multi-nucleated bodies in the oocytes, typical of Marteilioides infection, were identified for the first time in Suminoe oysters. The SSU rDNA sequence of a Marteilioides-like organism isolated from Suminoe oysters was 99.9% similar to that of M. chungmuensis. Marteilioides sp. was also observed from 7 Manila clams of 1840 individuals examined, and the DNA sequences of which were 98.2% similar to the known sequence of M. chungmuensis. Unlike Marteilioides infection of Pacific oysters, no remarkable pathological symptoms, such as large multiple lumps on the mantle, were observed in infected Suminoe oysters or Manila clams. Distribution of the infected Manila clams, Suminoe oysters and Pacific oysters was limited to small bays on the south coast, suggesting that the southern coast is the enzootic area of Marteilioides infection.


Asunto(s)
Bivalvos/parasitología , Cercozoos/aislamiento & purificación , Ostreidae/parasitología , Animales , Cercozoos/clasificación , Cercozoos/genética , ADN Protozoario/química , ADN Ribosómico/química , Corea (Geográfico) , Filogenia , Análisis de Secuencia de ADN
8.
Water Res ; 244: 120482, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37678038

RESUMEN

An integrated ultraviolet C light-emitting diode (UV-C LED) water disinfection system activated by microbial fuel cells (MFCs) was developed, and optimized via electric circuit and device voltage profiling. The intensity of the renewable energy operated, self-powered UV-C LED for E. coli inactivation was calculated by bio-dosimetry to be 2.4  × 10-2 µW cm-2 using fluence-based rate constant (k) of ∼1.03 (±0.11) cm2/mJ to obtain the reduction equivalent fluence kinetics value. Finally, the first-order rate constant for E. coli inactivation during the tailored hybrid disinfection system was found to be 0.53 (±0.1) cm2/mJ by multiplying intensity with 1.09 (±0.1) × 10-5 s-1 derived from the linear regression of E. coli inactivation as a function of time. Furthermore, selected model microbial consisting of two bacteria (Salmonella sp. and Listeria sp.) and three viruses (MS2 bacteriophage, influenza A virus, and murine norovirus-1) were treated with UV-C LED irradiation under controlled experimental conditions to validate the disinfection efficiency of the system. Consequently, the required to achieve significant removal (i.e., >3-log; 99.9%) UV fluence and dose time were calculated to be 4-7 cm2/mJ and 54-76 h and 33-53 cm2/mJ and 400-622 h for model bacterial and viral, respectively. This study expands the applicability of microbial electrochemical system (MES) for microbial disinfection and could be utilized in future MFCs implementation studies for predicting and measuring the kinetics of microbial elimination using a tailored hybrid water treatment system.


Asunto(s)
Fuentes de Energía Bioeléctrica , Animales , Ratones , Desinfección , Escherichia coli , Electricidad , Cinética
9.
Sci Total Environ ; 902: 166414, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37604374

RESUMEN

In this study, we investigated the biogenic mineral transformation of poorly crystalline ferrihydrite in the presence of an acclimated microbial consortium after confirming successful soil microbial fuel cell optimization. The acclimated microbial consortia in the electrodes distinctly transformed amorphous ferrihydrite into crystallized hematite (cathode) and goethite (anode) under ambient culture conditions (30 °C). Serial analysis, including transmission/scanning electron microscopy and X-ray/selected area electron diffraction, confirmed that the biogenically synthesized nanostructures were iron nanospheres (~100 nm) for hematite and nanostars (~300 nm) for goethite. Fe(II) ion production with acetate oxidation via anaerobic respiration was much higher in the anode electrode sample (3.2- to 17.8-fold) than for the cathode electrode or soil samples. Regarding the culturable bacteria from the acclimated microbial consortium, the microbial isolates were more abundant and diverse at the anode. These results provide new insights into the biogeochemistry of iron minerals and microbial fuel cells in a soil environment, along with physiological characters of microbes (i.e., iron-reducing bacteria), for in situ applications in sustainable energy research.


Asunto(s)
Fuentes de Energía Bioeléctrica , Consorcios Microbianos , Suelo , Compuestos Férricos/química , Minerales/química , Hierro/química , Oxidación-Reducción , Bacterias , Electrodos
10.
Am J Transl Res ; 15(3): 1831-1841, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37056800

RESUMEN

OBJECTIVES: EGT022, an RGD-containing recombinant disintegrin from human ADAM metallopeptidase domain 15 (ADAM15), has been reported to stimulate vascular maturation of retinal blood vessels with promotion of pericyte coverage through binding to integrin αIIbß3. Previous studies have reported that angiogenesis can be inhibited by several RGD motif-containing disintegrins; however, the effect of EGT022 on Vascular endothelial growth factor (VEGF)-induced angiogenesis has not yet been determined. This study was conducted in order to evaluate the anti-angiogenic function of EGT022 in VEGF-induced endothelial cells. METHODS: A proliferation and migration assay was performed using human umbilical vein endothelial cells (HUVEC) cells stimulated with VEGF to determine whether the angiogenic process was suppressed by EGT022. An in vitro trans-well assay and Mile's permeability assay were performed to determine the effect of EGT022 on permeability. Western blot was performed in order to further determine whether EGT022 can inhibit phosphorylation of VEGF receptor-2 (VEGFR2) and Phospholipase C gamma1 (PLC-γ1). An integrin binding assay and luciferase assay were performed for identification of the integrin target of EGT022. RESULTS: Angiogenesis including proliferation, migration, tube formation, and permeability was significantly inhibited by EGT022 in HUVEC cells. Our findings also demonstrated that EGT022 binds directly to integrin αvß3, induces dephosphorylation of integrin ß3, and inhibits phosphorylation of VEGFR2. In addition, phosphorylation of PLC-γ1 and activation of Nuclear Factor of Activated T-cell (NFAT), a downstream pathway of VEGF, are inhibited by EGT022 in HUVEC cells. CONCLUSION: These results clearly demonstrate the anti-angiogenic role played by EGT022 as a potent antagonist of integrin ß3 in endothelial cells.

11.
Hum Mol Genet ; 19(3): 445-53, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19897589

RESUMEN

Marie Unna hereditary hypotrichosis (MUHH) is a rare autosomal dominant hair disorder. Through the study of a mouse model, we identified a mutation in the 5'-untranslated region of the hairless (HR) gene in patients with MUHH in a Caucasian family. The corresponding mutation, named 'hairpoor', was found in mutant mice that were generated through N-ethyl-N-nitrosourea mutagenesis. Hairpoor mouse mutants display partial hair loss at an early age and progress to near alopecia, which resembles the MUHH phenotype. This mutation conferred overexpression of HR through translational derepression and, in turn, decreased the expression of Sfrp2, an inhibitor of the Wnt signaling pathway. This study indicates that the gain in function of HR also results in alopecia, as seen with the loss of function of HR, via abnormal upregulation of the Wnt signaling pathway.


Asunto(s)
Expresión Génica , Hipotricosis/congénito , Hipotricosis/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Proteínas Wnt/metabolismo , Regiones no Traducidas 5' , Animales , Secuencia de Bases , Línea Celular , Modelos Animales de Enfermedad , Femenino , Humanos , Hipotricosis/genética , Masculino , Ratones , Ratones Pelados , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Mutación , Linaje , Factores de Transcripción/metabolismo , Regulación hacia Arriba , Proteínas Wnt/genética
12.
Nanomaterials (Basel) ; 12(8)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35458023

RESUMEN

Microbial electrolysis cells (MECs) have attracted significant interest as sustainable green hydrogen production devices because they utilize the environmentally friendly biocatalytic oxidation of organic wastes and electrochemical proton reduction with the support of relatively lower external power compared to that used by water electrolysis. However, the commercialization of MEC technology has stagnated owing to several critical technological challenges. Recently, many attempts have been made to utilize nanomaterials in MECs owing to the unique physicochemical properties of nanomaterials originating from their extremely small size (at least <100 nm in one dimension). The extraordinary properties of nanomaterials have provided great clues to overcome the technological hurdles in MECs. Nanomaterials are believed to play a crucial role in the commercialization of MECs. Thus, understanding the technological challenges of MECs, the characteristics of nanomaterials, and the employment of nanomaterials in MECs could be helpful in realizing commercial MEC technologies. Herein, the critical challenges that need to be addressed for MECs are highlighted, and then previous studies that used nanomaterials to overcome the technological difficulties of MECs are reviewed.

13.
Am J Cancer Res ; 11(3): 746-759, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33791151

RESUMEN

Worldwide, colorectal cancer (CRC) is one of the most common cancers and is a leading cause of cancer-related deaths. Accumulating evidence suggests that probiotics suppress the development of various cancers including CRC. Recently, we reported a Lactobacillus rhamnosus (LR)-derived 8 kDa protein (p8) that displayed anti-cancer properties in CRC cells. However, the precise anti-cancer mechanism of p8 and its target genes has not been fully examined. In the present study, we reveal that p8 leads to apoptotic cells and cleaved PARP1 expression in a mouse xenograft model of CRC. Additionally, we identified Ring finger protein 152 (RNF152) as a putative target of p8 using RNA-sequencing. Furthermore, the expression levels of RNF152 were increased following in vivo and in vitro treatment with p8. We also found that p8 leads to the accumulation of cleaved PARP1 in CRC cells. These results suggest that p8 induces apoptosis via regulation of RNF152, thus inhibiting the development of CRC.

14.
Bioresour Technol ; 320(Pt A): 124254, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33120066

RESUMEN

The aim of this work is to study for concurrent harvesting bioelectricity and struvite mineral from mineral rich wastewater containing with nitrogen (N) and phosphorous (P) contents using MFCs and a chemical precipitation system. Whole reaction was constructed to sequentially run hybrid reactor (consisting of MFCs and struvite precipitation), gravitational sedimentation, nitrogen purging and MFCs. The MFCs generated around 6.439 ± 0.481 mA and 2.084 ± 0.310 mW as Imax and Pmax, respectively under 2g/l of COD. More than 70% of C source, and around 95% of P and N sources have been removed. Struvite mineral was precipitated in the hybrid reactor after the injection of Mg2+ and collected in sedimentation tank. Economic feasibility and beneficial concerns were carefully investigated, and it is proposed for applications in the "decentralised treatment process" of agriculture and livestock wastewater in order to realise circular and strong economy in agriculture by creating virtuous cycles.


Asunto(s)
Fuentes de Energía Bioeléctrica , Purificación del Agua , Minerales , Estruvita , Eliminación de Residuos Líquidos , Aguas Residuales
15.
BMC Genomics ; 11: 640, 2010 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21083932

RESUMEN

BACKGROUND: The transcriptional cofactor, Hairless (HR), acts as one of the key regulators of hair follicle cycling; the loss of function mutations is the cause of the expression of the hairless phenotype in humans and mice. Recently, we reported a new Hr mutant mouse called 'Hairpoor' (Hr(Hp)). These mutants harbor a gain of the function mutation, T403A, in the Hr gene. This confers the overexpression of HR and Hr(Hp) is an animal model of Marie Unna hereditary hypotrichosis in humans. In the present study, the expression profile of Hr(Hp)/Hr(Hp) skin was investigated using microarray analysis to identify genes whose expression was affected by the overexpression of HR. RESULTS: From 45,282 mouse probes, differential expressions in 43 (>2-fold), 306 (>1.5-fold), and 1861 genes (>1.2-fold) in skin from Hr(Hp)/Hr(Hp) mice were discovered and compared with skin from wild-type mice. Among the 1861 genes with a > 1.2-fold increase in expression, further analysis showed that the expression of eight genes known to have a close relationship with hair follicle development, ascertained by conducting real-time PCR on skin RNA produced during hair follicle morphogenesis (P0-P14), indicated that four genes, Wif1, Casp14, Krt71, and Sfrp1, showed a consistent expression pattern with respect to HR overexpression in vivo. CONCLUSION: Wif1 and Casp14 were found to be upregulated, whereas Krt71 and Sfrp1 were downregulated in cells overexpressing HR in transient transfection experiments on keratinocytes, suggesting that HR may transcriptionally regulate these genes. Further studies are required to understand the mechanism of this regulation by the HR cofactor.


Asunto(s)
Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Piel/metabolismo , Envejecimiento/genética , Animales , Línea Celular , Regulación hacia Abajo/genética , Regulación del Desarrollo de la Expresión Génica , Folículo Piloso/crecimiento & desarrollo , Folículo Piloso/metabolismo , Folículo Piloso/patología , Queratinocitos/metabolismo , Ratones , Ratones Pelados , Morfogénesis/genética , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Piel/patología , Transfección , Regulación hacia Arriba/genética
16.
Trends Biotechnol ; 38(6): 667-678, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31980302

RESUMEN

Microbial fuel cell (MFC) systems have been developed for potential use as power sources, along with several other applications, with bacteria as the prime factor enabling electrocatalytic activity. Limited voltage and current production from unit cells limit their practical applicability, so stacking multiple MFCs has been proposed as a way to increase power production. Special attention is paid to voltage reversal (VR), a common occurrence in stacked MFCs, and to identifying the mechanisms underlying this phenomenon. We also proposed realistic perspectives on stacked MFCs in an effort to control and suppress VR by balancing the kinetics in the system, such as using enriched electroactive microorganisms or altering the circuitry mode.


Asunto(s)
Bacterias/química , Fuentes de Energía Bioeléctrica , Suministros de Energía Eléctrica , Electricidad , Electrodos , Humanos , Cinética
17.
Artículo en Inglés | MEDLINE | ID: mdl-32605225

RESUMEN

Background: Recent research indicates that shift work is associated with neurocognitive function. However, studies that examine the association between shift work and neurocognitive function in firefighters have not yet been performed. We examined the effect of shift work on neurocognitive function in firefighters by measuring and comparing neurocognitive function before and after night shift. Methods: 352 firefighters from eight fire stations in South Korea were included in this study. We performed neurocognitive function test using central nervous system vital signs (CNSVS) during daytime work and on the next day after night work. We performed paired t-tests to assess differences between neurocognitive function before and after night work. We also compared neurocognitive function in insomnia and depression. We used a general linear model to analyze the associations between shiftwork schedule and the changes in neurocognitive function. Results: The neurocognitive function significantly decreased in six domains (composite memory, verbal memory, visual memory, complex attention, psychomotor speed, and motor speed) as did the neurocognitive index on the next day after night work compared with during day work. These decreased domains were the same following night work regardless of the type of shift work. Conclusion: Night work in firefighters may cause neurocognitive decline.


Asunto(s)
Trastornos del Conocimiento , Bomberos , Horario de Trabajo por Turnos , Adulto , Estudios Controlados Antes y Después , Depresión , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , República de Corea/epidemiología , Horario de Trabajo por Turnos/efectos adversos , Sueño , Trastornos del Inicio y del Mantenimiento del Sueño , Tolerancia al Trabajo Programado , Adulto Joven
18.
Fish Shellfish Immunol ; 27(2): 296-301, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19490941

RESUMEN

The Suminoe oyster Crassostrea ariakensis has been attempted to be introduced in the Chesapeake Bay, USA, as an alternative to the eastern oyster Crassostrea virginica. Commercial production of Suminoe oysters is currently restricted due to the incomplete understanding of their biological, physiological and immunological nature. Accordingly, understanding immune system of C. ariakensis is crucial to prevent disease associated mortality and subsequent management of the Suminoe oyster. We investigated immunological activities and morphology of hemocytes of the Suminoe oyster using flow cytometry and light microscopy. Three types of hemocytes were identified in the hemolymph including hyalinocyte, granulocyte and blast-like cells. Hyalinocytes were the largest cells and the most abundant, while granulocytes were intermediate-size cell containing numerous granules in the cytoplasm. Blast-like cells were the smallest and least numerous. Flow cytometry revealed that the granulocytes are most active in the cell phagocytosis and spontaneous reactive oxygen species (ROS) production. The hyalinocytes also showed a certain level of the phagocytosis and oxidative activity but in a lesser extent than the granulocytes. In contrast, the blast-like cells did not show any phagocytosis or oxidative activity. The flow cytometry used in this study confirmed that as observed from other marine bivalves, the granulocytes are the main hemocytes involved in the cellular defence in the Suminoe oyster.


Asunto(s)
Crassostrea/citología , Crassostrea/inmunología , Animales , Recuento de Células , Citometría de Flujo , Hemocitos/inmunología , Fagocitosis/fisiología , Estallido Respiratorio/fisiología
19.
Genes (Basel) ; 10(8)2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31430963

RESUMEN

Recently, we reported a novel therapeutic probiotic-derived protein, p8, which has anti-colorectal cancer (anti-CRC) properties. In vitro experiments using a CRC cell line (DLD-1), anti-proliferation activity (about 20%) did not improve after increasing the dose of recombinant-p8 (r-p8) to >10 µM. Here, we show that this was due to the low penetrative efficiency of r-p8 exogenous treatment. Furthermore, we found that r-p8 entered the cytosol through endocytosis, which might be a reason for the low penetration efficiency. Therefore, to improve the therapeutic efficacy of p8, we tried to improve delivery to CRC cells. This resulted in endogenous expression of p8 and increased the anti-proliferative effects by up to 2-fold compared with the exogenous treatment (40 µM). Anti-migration activity also increased markedly. Furthermore, we found that the anti-proliferation activity of p8 was mediated by inhibition of the p53-p21-Cyclin B1/Cdk1 signal pathway, resulting in growth arrest at the G2 phase of the cell cycle. Taken together, these results suggest that p8 is toxic to cancer cells, shows stable expression within cells, and shows strong cancer suppressive activity by inducing cell cycle arrest. Therefore, p8 is a strong candidate for gene therapy if it can be loaded onto cancer-specific viruses.


Asunto(s)
Antineoplásicos/farmacología , Proteínas Bacterianas/farmacología , Neoplasias Colorrectales/metabolismo , Lacticaseibacillus rhamnosus/metabolismo , Probióticos/metabolismo , Proteína Quinasa CDC2/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclina B1/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Endocitosis , Fase G2 , Humanos , Lacticaseibacillus rhamnosus/química , Probióticos/química , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo
20.
Mol Cells ; 42(11): 755-762, 2019 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-31707776

RESUMEN

Despite decades of research into colorectal cancer (CRC), there is an ongoing need for treatments that are more effective and safer than those currently available. Lactic acid bacteria (LAB) show beneficial effects in the context of several diseases, including CRC, and are generally regarded as safe. Here, we isolated a Lactobacillus rhamnosus (LR)-derived therapeutic protein, p8, which suppressed CRC proliferation. We found that p8 translocated specifically to the cytosol of DLD-1 cells. Moreover, p8 down-regulated expression of Cyclin B1 and Cdk1, both of which are required for cell cycle progression. We confirmed that p8 exerted strong anti-proliferative activity in a mouse CRC xenograft model. Intraperitoneal injection of recombinant p8 (r-p8) led to a significant reduction (up to 59%) in tumor mass when compared with controls. In recent years, bacterial drug delivery systems (DDSs) have proven to be effective therapeutic agents for acute colitis. Therefore, we aimed to use such systems, particularly LAB, to generate the valuable therapeutic proteins to treat CRC. To this end, we developed a gene expression cassette capable of inducing secretion of large amounts of p8 protein from Pediococcus pentosaceus SL4 (PP). We then confirmed that this protein (PP-p8) exerted anti-proliferative activity in a mouse CRC xenograft model. Oral administration of PP-p8 DDS led to a marked reduction in tumor mass (up to 64%) compared with controls. The PP-p8 DDS using LAB described herein has advantages over other therapeutics; these advantages include improved safety (the protein is a probiotic), cost-free purification, and specific targeting of CRC cells.


Asunto(s)
Proteínas Bacterianas/genética , Neoplasias Colorrectales/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Pediococcus pentosaceus/metabolismo , Proteínas Recombinantes/administración & dosificación , Animales , Proteínas Bacterianas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HT29 , Humanos , Inyecciones Intraperitoneales , Lacticaseibacillus rhamnosus/genética , Lacticaseibacillus rhamnosus/metabolismo , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas Recombinantes/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA