Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 24(20): 5937-5943, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38712885

RESUMEN

Advanced microelectronics in the future may require semiconducting channel materials beyond silicon. Two-dimensional (2D) semiconductors, with their atomically thin thickness, hold great promise for future electronic devices. One challenge to achieving high-performance 2D semiconductor field effect transistors (FET) is the high contact resistance at the metal-semiconductor interface. In this study, we develop a charge-transfer doping strategy with WSe2/α-RuCl3 heterostructures to achieve low-resistance ohmic contact for p-type monolayer WSe2 transistors. We show that hole doping as high as 3 × 1013 cm-2 can be achieved in the WSe2/α-RuCl3 heterostructure due to its type-III band alignment, resulting in an ohmic contact with resistance of 4 kΩ µm. Based on that, we demonstrate p-type WSe2 transistors with an on-current of 35 µA·µm-1 and an ION/IOFF ratio exceeding 109 at room temperature.

2.
Nano Lett ; 23(7): 2898-2904, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36921228

RESUMEN

Optical microscopy plays a critical role in the fabrication of two-dimensional (2D) van der Waals heterostructures. An outstanding challenge in conventional microscopy is to visualize transparent 2D layers as well as embedded monolayers in a stacked heterostructure with high optical contrast. Phase-contrast microscopy, first developed by Frits Zernike in the 1930s, leverages the interference effect between specimen scattered light and background light to increase the contrast of transparent specimens. Such phase-contrast microscopy, always in a transmission configuration, revolutionized the study of transparent cellular structures in biology. Here, we develop a versatile reflective phase-contrast microscopy for imaging 2D heterostructures. We employ two spatial light modulators to flexibly control the intensity and phase of the illumination and the reflected light. This reflective phase-contrast microscopy achieves unprecedented high contrast for imaging a transparent 2D monolayer. It also enables direct observation of 2D monolayers embedded inside a thick heterostructure that are "invisible" in conventional microscopy.

3.
Phys Rev Lett ; 126(1): 015901, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33480802

RESUMEN

We report measurements of the thermal Hall effect in single crystals of both pristine and isotopically substituted strontium titanate. We discovered a 2 orders of magnitude difference in the thermal Hall conductivity between SrTi^{16}O_{3} and ^{18}O-enriched SrTi^{18}O_{3} samples. In most temperature ranges, the magnitude of thermal Hall conductivity (κ_{xy}) in SrTi^{18}O_{3} is proportional to the magnitude of the longitudinal thermal conductivity (κ_{xx}), which suggests a phonon-mediated thermal Hall effect. However, they deviate in the temperature of their maxima, and the thermal Hall angle ratio (|κ_{xy}/κ_{xx}|) shows anomalously decreasing behavior below the ferroelectric Curie temperature T_{c}∼25 K. This observation suggests a new underlying mechanism, as the conventional scenario cannot explain such differences within the slight change in phonon spectrum. Notably, the difference in magnitude of thermal Hall conductivity and rapidly decreasing thermal Hall angle ratio in SrTi^{18}O_{3} is correlated with the strength of quantum critical fluctuations in this displacive ferroelectric. This relation points to a link between the quantum critical physics of strontium titanate and its thermal Hall effect, a possible clue to explain this example of an exotic phenomenon in nonmagnetic insulating systems.

4.
Nat Commun ; 15(1): 243, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38172119

RESUMEN

The thermal Hall effect in magnetic insulators has been considered a powerful method for examining the topological nature of charge-neutral quasiparticles such as magnons. Yet, unlike the kagome system, the triangular lattice has received less attention for studying the thermal Hall effect because the scalar spin chirality cancels out between adjacent triangles. However, such cancellation cannot be perfect if the triangular lattice is distorted. Here, we report that the trimerized triangular lattice of multiferroic hexagonal manganite YMnO3 produces a highly unusual thermal Hall effect under an applied magnetic field. Our theoretical calculations demonstrate that the thermal Hall conductivity is related to the splitting of the otherwise degenerate two chiralities of its 120˚ magnetic structure. Our result is one of the most unusual cases of topological physics due to this broken Z2 symmetry of the chirality in the supposedly paramagnetic state of YMnO3, due to strong topological spin fluctuations with the additional intricacy of a Dzyaloshinskii-Moriya interaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA