Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(20): 13817-13835, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38716885

RESUMEN

The reaction of Li[(TAML)CoIII]·3H2O (TAML = tetraamido macrocyclic tetraanionic ligand) with iodosylbenzene at 253 K in acetone in the presence of redox-innocent metal ions (Sc(OTf)3 and Y(OTf)3) or triflic acid affords a blue species 1, which is converted reversibly to a green species 2 upon cooling to 193 K. The electronic structures of 1 and 2 have been determined by combining advanced spectroscopic techniques (X-band electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), X-ray absorption spectroscopy/extended X-ray absorption fine structure (XAS/EXAFS), and magnetic circular dichroism (MCD)) with ab initio theoretical studies. Complex 1 is best represented as an S = 1/2 [(Sol)(TAML•+)CoIII---OH(LA)]- species (LA = Lewis/Brønsted acid and Sol = solvent), where an S = 1 Co(III) center is antiferromagnetically coupled to S = 1/2 TAML•+, which represents a one-electron oxidized TAML ligand. In contrast, complex 2, also with an S = 1/2 ground state, is found to be multiconfigurational with contributions of both the resonance forms [(H-TAML)CoIV═O(LA)]- and [(H-TAML•+)CoIII═O(LA)]-; H-TAML and H-TAML•+ represent the protonated forms of TAML and TAML•+ ligands, respectively. Thus, the interconversion of 1 and 2 is associated with a LA-associated tautomerization event, whereby H+ shifts from the terminal -OH group to TAML•+ with the concomitant formation of a terminal cobalt-oxo species possessing both singlet (SCo = 0) Co(III) and doublet (SCo = 1/2) Co(IV) characters. The reactivities of 1 and 2 at different temperatures have been investigated in oxygen atom transfer (OAT) and hydrogen atom transfer (HAT) reactions to compare the activation enthalpies and entropies of 1 and 2.

2.
J Magn Reson Imaging ; 59(4): 1218-1228, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37477575

RESUMEN

BACKGROUND: While breast ultrasound (US) is a useful tool for diagnosing breast masses, it can entail false-positive biopsy results because of some overlapping features between benign and malignant breast masses and subjective interpretation. PURPOSE: To evaluate the performance of conductivity imaging for reducing false-positive biopsy results related to breast US, as compared to diffusion-weighted imaging (DWI) and abbreviated MRI consisting of one pre- and one post-contrast T1-weighted imaging. STUDY TYPE: Prospective. SUBJECTS: Seventy-nine women (median age, 44 years) with 86 Breast Imaging Reporting and Data System (BI-RADS) category 4 masses as detected by breast US. FIELD STRENGTH/SEQUENCE: 3-T, T2-weighted turbo spin echo sequence, DWI, and abbreviated contrast-enhanced MRI (T1-weighted gradient echo sequence). ASSESSMENT: US-guided biopsy (reference standard) was obtained on the same day as MRI. The maximum and mean conductivity parameters from whole and single regions of interest (ROIs) were measured. Apparent diffusion coefficient (ADC) values were obtained from an area with the lowest signal within a lesion on the ADC map. The performance of conductivity, ADC, and abbreviated MRI for reducing false-positive biopsies was evaluated using the following criteria: lowest conductivity and highest ADC values among malignant breast lesions and BI-RADS categories 2 or 3 on abbreviated MRI. STATISTICAL TESTS: One conductivity parameter with the maximum area under the curve (AUC) from receiver operating characteristics was selected. A P-value <0.05 was considered statistically significant. RESULTS: US-guided biopsy revealed 65 benign lesions and 21 malignant lesions. The mean conductivity parameter of the single ROI method was selected (AUC = 0.74). Considering conductivity (≤0.10 S/m), ADC (≥1.60 × 10-3 mm2 /sec), and BI-RADS categories 2 or 3 reduced false-positive biopsies by 23% (15 of 65), 38% (25 of 65), and 43% (28 of 65), respectively, without missing malignant lesions. DATA CONCLUSION: Conductivity imaging may show lower performance than DWI and abbreviated MRI in reducing unnecessary biopsies. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Neoplasias de la Mama , Medios de Contraste , Femenino , Humanos , Adulto , Estudios Prospectivos , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Biopsia , Biopsia Guiada por Imagen , Diagnóstico Diferencial , Neoplasias de la Mama/diagnóstico por imagen , Sensibilidad y Especificidad
3.
J Chem Inf Model ; 64(3): 677-689, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38270063

RESUMEN

Thermally activated delayed fluorescence (TADF) material has attracted great attention as a promising metal-free organic light-emitting diode material with a high theoretical efficiency. To accelerate the discovery of novel TADF materials, computer-aided material design strategies have been developed. However, they have clear limitations due to the accessibility of only a few computationally tractable properties. Here, we propose TADF-likeness, a quantitative score to evaluate the TADF potential of molecules based on a data-driven concept of chemical similarity to existing TADF molecules. We used a deep autoencoder to characterize the common features of existing TADF molecules with common chemical descriptors. The score was highly correlated with the four essential electronic properties of TADF molecules and had a high success rate in large-scale virtual screening of millions of molecules to identify promising candidates at almost no cost, validating its feasibility for accelerating TADF discovery. The concept of TADF-likeness can be extended to other fields of materials discovery.


Asunto(s)
Aprendizaje Profundo , Diseño Asistido por Computadora , Electrónica , Fluorescencia
4.
Angew Chem Int Ed Engl ; 63(21): e202401433, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38433099

RESUMEN

We introduce the heterocumulene ligand [(Ad)NCC(tBu)]- (Ad=1-adamantyl (C10H15), tBu=tert-butyl, (C4H9)), which can adopt two forms, the azaalleneyl and ynamide. This ligand platform can undergo a reversible chelotropic shift using Brønsted acid-base chemistry, which promotes an unprecedented spin-state change of the [VIII] ion. These unique scaffolds are prepared via addition of 1-adamantyl isonitrile (C≡NAd) across the alkylidyne in complexes [(BDI)V≡CtBu(OTf)] (A) (BDI-=ArNC(CH3)CHC(CH3)NAr), Ar=2,6-iPr2C6H3) and [(dBDI)V≡CtBu(OEt2)] (B) (dBDI2-=ArNC(CH3)CHC(CH2)NAr). Complex A reacts with C≡NAd, to generate the high-spin [VIII] complex with a κ1-N-ynamide ligand, [(BDI)V{κ1-N-(Ad)NCC(tBu)}(OTf)] (1). Conversely, B reacts with C≡NAd to generate a low-spin [VIII] diamagnetic complex having a chelated κ2-C,N-azaalleneyl ligand, [(dBDI)V{κ2-N,C-(Ad)NCC(tBu)}] (2). Theoretical studies have been applied to better understand the mechanism of formation of 2 and the electronic reconfiguration upon structural rearrangement by the alteration of ligand denticity between 1 and 2.

5.
Hum Brain Mapp ; 44(15): 4986-5001, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37466309

RESUMEN

Magnetic resonance electrical properties tomography (MR-EPT) is a non-invasive measurement technique that derives the electrical properties (EPs, e.g., conductivity or permittivity) of tissues in the radiofrequency range (64 MHz for 1.5 T and 128 MHz for 3 T MR systems). Clinical studies have shown the potential of tissue conductivity as a biomarker. To date, model-based conductivity reconstructions rely on numerical assumptions and approximations, leading to inaccuracies in the reconstructed maps. To address such limitations, we propose an artificial neural network (ANN)-based non-linear conductivity estimator trained on simulated data for conductivity brain imaging. Network training was performed on 201 synthesized T2-weighted spin-echo (SE) data obtained from the finite-difference time-domain (FDTD) electromagnetic (EM) simulation. The dataset was composed of an approximated T2-w SE magnitude and transceive phase information. The proposed method was tested three in-silico and in-vivo on two volunteers and three patients' data. For comparison purposes, various conventional phase-based EPT reconstruction methods were used that ignore B 1 + magnitude information, such as Savitzky-Golay kernel combined with Gaussian filter (S-G Kernel), phase-based convection-reaction EPT (cr-EPT), magnitude-weighted polynomial-fitting phase-based EPT (Poly-Fit), and integral-based phase-based EPT (Integral-based). From the in-silico experiments, quantitative analysis showed that the proposed method provides more accurate and improved quality (e.g., high structural preservation) conductivity maps compared to conventional reconstruction methods. Representatively, in the healthy brain in-silico phantom experiment, the proposed method yielded mean conductivity values of 1.97 ± 0.20 S/m for CSF, 0.33 ± 0.04 S/m for WM, and 0.52 ± 0.08 S/m for GM, which were closer to the ground-truth conductivity (2.00, 0.30, 0.50 S/m) than the integral-based method (2.56 ± 2.31, 0.39 ± 0.12, 0.68 ± 0.33 S/m). In-vivo ANN-based conductivity reconstructions were also of improved quality compared to conventional reconstructions and demonstrated network generalizability and robustness to in-vivo data and pathologies. The reported in-vivo brain conductivity values were in agreement with literatures. In addition, the proposed method was observed for various SNR levels (SNR levels = 10, 20, 40, and 58) and repeatability conditions (the eight acquisitions with the number of signal averages = 1). The preliminary investigations on brain tumor patient datasets suggest that the network trained on simulated dataset can generalize to unforeseen in-vivo pathologies, thus demonstrating its potential for clinical applications.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Conductividad Eléctrica , Fantasmas de Imagen , Neuroimagen , Algoritmos
6.
Chemistry ; 29(14): e202203128, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36447369

RESUMEN

The cationic complex [Ni(H)(OH)]+ was previously found to activate dioxygen and methane in gas phase under single collision conditions. These remarkable reactivities were thought to originate from a non-classical electronic structure, where the Ni-center adopts a Ni(II), instead of the classically expected Ni(III) oxidation state by formally accepting an electron from the hydroxo ligand, which formally becomes a hydroxyl radical in the process. Such radicaloid oxygen moieties are envisioned to easily react with otherwise inert substrates, mimicking familiar reactivities of free radicals. In this study, the reductive activation of dioxygen by [Ni(H)(OH)]+ to afford the hydroperoxo species was investigated using coupled cluster, multireference ab initio and density functional theory calculations. Orbital and wave function analyses indicate that O2 binding tranforms the aforementioned non-classical electronic structure to a classical Ni(III)-hydroxyl system, before O2 reduction takes place. Remarkably, we found no evidence for a direct involvement of the radicaloid hydroxyl in the reaction with O2 , as is often assumed. The function of the redox non-innocent character of the activator complex is to protect the reactive electronic structure until the complex engages O2 , upon which a dramatic electronic reorganization releases internal energy and drives the chemical reaction to completion.

7.
J Am Chem Soc ; 144(29): 13066-13070, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35833652

RESUMEN

Highly modular and rational syntheses of titanium compounds containing ditelluride, terminal telluride, and bis(telluride) structural motifs are disclosed in this study. Titanate anions bearing two cis and terminal telluride functionalities bound to the same metal center represent a unique example of a group 4 transition metal bis(chalcogenide) ion and are accessed in a simple, single-step procedure from Ti(III) bis(alkyl) complexes in the presence of an outer-sphere reductant and at least 3 equiv of Te0 powder. These compounds have been characterized crystallographically and spectroscopically with some preliminary reactivity reported for the anionic Ti(═Te)2 motif. We also report solution 125Te NMR spectral data in addition to theoretical studies addressing the bonding and structure for these titanate bis(tellurido) systems.


Asunto(s)
Compuestos Organometálicos , Titanio , Espectroscopía de Resonancia Magnética , Metales , Compuestos Organometálicos/química , Titanio/química
8.
Inorg Chem ; 61(17): 6438-6450, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35438990

RESUMEN

It was recently discovered that (Ph2PPrPDI)Mn (PDI = pyridine diimine) exists as a superposition of low-spin Mn(II) that is supported by a PDI dianion and intermediate-spin Mn(II) that is antiferromagnetically coupled to a triplet PDI dianion, a finding that encouraged the synthesis and electronic structure evaluation of late first row metal variants that feature the same chelate. The addition of Ph2PPrPDI to FeBr2 resulted in bromide dissociation and the formation of [(Ph2PPrPDI)FeBr][Br]. Reduction of this precursor using excess sodium amalgam afforded (Ph2PPrPDI)Fe, which possesses an Fe(II) center that is supported by a dianionic PDI ligand. Similarly, reduction of a premixed solution of Ph2PPrPDI and CoCl2 yielded the cobalt analog, (Ph2PPrPDI)Co. EPR spectroscopy and density functional theory calculations revealed that this compound features a high-spin Co(I) center that is antiferromagnetically coupled to a PDI radical anion. The addition of Ph2PPrPDI to Ni(COD)2 resulted in ligand displacement and the formation of (Ph2PPrPDI)Ni, which was found to possess a pendent phosphine group. Single-crystal X-ray diffraction, CASSCF calculations, and EPR spectroscopy indicate that (Ph2PPrPDI)Ni is best described as having a Ni(II)-PDI2- configuration. The electronic differences between these compounds are highlighted, and a computational analysis of Ph2PPrPDI denticity has revealed the thermodynamic penalties associated with phosphine dissociation from 5-coordinate (Ph2PPrPDI)Mn, (Ph2PPrPDI)Fe, and (Ph2PPrPDI)Co.


Asunto(s)
Cobalto , Hierro , Cobalto/química , Electrónica , Hierro/química , Ligandos , Níquel , Oxidación-Reducción , Fosfinas , Piridinas/química
9.
Magn Reson Med ; 86(4): 2084-2094, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33949721

RESUMEN

PURPOSE: To denoise B1+ phase using a deep learning method for phase-based in vivo electrical conductivity reconstruction in a 3T MR system. METHODS: For B1+ phase deep-learning denoising, a convolutional neural network (U-net) was chosen. Training was performed on data sets from 10 healthy volunteers. Input data were the real and imaginary components of single averaged spin-echo data (SNR = 45), which was used to approximate the B1+ phase. For label data, multiple signal-averaged spin-echo data (SNR = 128) were used. Testing was performed on in silico and in vivo data. Reconstructed conductivity maps were derived using phase-based conductivity reconstructions. Additionally, we investigated the usability of the network to various SNR levels, imaging contrasts, and anatomical sites (ie, T1 , T2 , and proton density-weighted brain images and proton density-weighted breast images. In addition, conductivity reconstructions from deep learning-based denoised data were compared with conventional image filters, which were used for data denoising in electrical properties tomography (ie, the Gaussian filtering and the Savitzky-Golay filtering). RESULTS: The proposed deep learning-based denoising approach showed improvement for B1+ phase for both in silico and in vivo experiments with reduced quantitative error measures compared with other methods. Subsequently, this resulted in an improvement of reconstructed conductivity maps from the denoised B1+ phase with deep learning. CONCLUSION: The results suggest that the proposed approach can be used as an alternative preprocessing method to denoise B1+ maps for phase-based conductivity reconstruction without relying on image filters or signal averaging.


Asunto(s)
Aprendizaje Profundo , Encéfalo/diagnóstico por imagen , Conductividad Eléctrica , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Relación Señal-Ruido
10.
J Magn Reson Imaging ; 54(2): 631-645, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33894088

RESUMEN

BACKGROUND: There is increasing interest in noncontrast-enhanced MRI due to safety concerns for gadolinium contrast agents. PURPOSE: To investigate the clinical feasibility of MR-based conductivity imaging for breast cancer detection and lesion differentiation. STUDY TYPE: Prospective. SUBJECTS: One hundred and ten women, with 112 known cancers and 17 benign lesions (biopsy-proven), scheduled for preoperative MRI. FIELD STRENGTH/SEQUENCE: Non-fat-suppressed T2-weighted turbo spin-echo sequence (T2WI), dynamic contrast-enhanced MRI and diffusion-weighted imaging (DWI) at 3T. ASSESSMENT: Cancer detectability on each imaging modality was qualitatively evaluated on a per-breast basis: the conductivity maps derived from T2WI were independently reviewed by three radiologists (R1-R3). T2WI, DWI, and pre-operative digital mammography were independently reviewed by three other radiologists (R4-R6). Conductivity and apparent diffusion coefficient (ADC) measurements (mean, minimum, and maximum) were performed for 112 cancers and 17 benign lesions independently by two radiologists (R1 and R2). Tumor size was measured from surgical specimens. STATISTICAL TESTS: Cancer detection rates were compared using generalized estimating equations. Multivariable logistic regression analysis was performed to identify factors associated with cancer detectability. Discriminating ability of conductivity and ADC was evaluated by using the areas under the receiver operating characteristic curve (AUC). RESULTS: Conductivity imaging showed lower cancer detection rates (20%-32%) compared to T2WI (62%-71%), DWI (85%-90%), and mammography (79%-88%) (all P < 0.05). Fatty breast on MRI (odds ratio = 11.8, P < 0.05) and invasive tumor size (odds ratio = 1.7, P < 0.05) were associated with cancer detectability of conductivity imaging. The maximum conductivity showed comparable ability to the mean ADC in discriminating between cancers and benign lesions (AUC = 0.67 [95% CI: 0.59, 0.75] vs. 0.84 [0.76, 0.90], P = 0.06 (R1); 0.65 [0.56, 0.73] vs. 0.82 [0.74, 0.88], P = 0.07 (R2)). DATA CONCLUSION: Although conductivity imaging showed suboptimal performance in breast cancer detection, the quantitative measurement of conductivity showed the potential for lesion differentiation. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Neoplasias de la Mama , Mama/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Imagen por Resonancia Magnética , Estudios Prospectivos , Estudios Retrospectivos
11.
Xenotransplantation ; 28(4): e12703, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34176167

RESUMEN

BACKGROUND: Porcine islet xenotransplantation is a promising treatment for type 1 diabetes as an alternative to human pancreatic islet transplantation and long-term insulin therapy. Several research groups have explored porcine islets as an alternative to the inconsistent and chronic shortage of pancreases from human organ donors. Studies have confirmed successful transplant of porcine islets into non-human primate models of diabetes; however, in most cases, they require more than one adult porcine donor to achieve sufficient viable islet mass for sustained function. The importance of GMP-grade reagents includes the following: specific enzymes utilized in the pancreatic isolation process were identified as a key factor in successful human clinical islet transplantation trials using cadaveric islets. As xenotransplantation clinical research progresses, isolation reagents and digestion enzymes play a key role in the consistency of the product and ultimately the outcome of the islet xenotransplant. In this study, we evaluated several commercially available enzyme blends that have been used for islet isolation. We evaluated their impact on islet isolation yield and subsequent islet function as part of our plan to bring xenotransplantation into clinical xenotransplantation trials. METHODS: Adult porcine islets were isolated from 16 to 17-month-old Yucatan miniature pigs following standard rapid procurement. Pigs weighed on average 48.71 ± 2.85 kg, and the produced pancreases were 39.51 ± 1.80 grams (mean ± SEM). After ductal cannulation, we evaluated both GMP-grade enzymes (Collagenase AF-1 GMP grade and Liberase MTF C/T GMP grade) and compared with standard non-GMP enzyme blend (Collagenase P). Islet quality control assessments including islet yield, islet size (IEQ), membrane integrity (acridine orange/propidium iodide), and functional viability (GSIS) were evaluated in triplicate on day 1 post-islet isolation culture. RESULTS: Islet yield was highest in the group of adult pigs where Collagenase AF-1 GMP grade was utilized. The mean islet yield was 16 586 ± 1391 IEQ/g vs 8302 ± 986 IEQ/g from pancreases isolated using unpurified crude Collagenase P. The mean islet size was higher in Collagenase AF-1 GMP grade with neutral protease than in Collagenase P and Liberase MTF C/T GMP grade. We observed no significant difference between the experimental groups, but in vitro islet function after overnight tissue culture was significantly higher in Collagenase AF-1 GMP grade with neutral protease and Liberase MTF C/T GMP grade than the crude control enzyme group. As expected, the GMP-grade enzyme has significantly lower endotoxin levels than the crude control enzyme group when measured. CONCLUSIONS: This study validates the importance of using specifically blended GMP grade for adult pig islet isolation for xenotransplantation trials and the ability to isolate a sufficient number of viable islets from one adult pig to provide a sufficient number for islets for a clinical islet transplantation. GMP-grade enzymes are highly efficient in increasing islet yield, size, viability, and function at a lower and acceptable endotoxin level. Ongoing research transplants these islets into animal models of diabetes to validate in vivo function. Also, these defined and reproducible techniques using GMP-grade enzymes allow for continuance of our plan to advance to xenotransplantation of isolated pig islets for the treatment of type 1 diabetes.


Asunto(s)
Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Animales , Separación Celular , Colagenasas , Páncreas , Porcinos , Trasplante Heterólogo
12.
Stem Cells ; 37(3): 368-381, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30444564

RESUMEN

Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into mature cells of various cell types. Although the differentiation process of MSCs requires lineage-specific transcription factors, the exact molecular mechanism that determines MSCs differentiation is not clearly addressed. Here, we demonstrate a Smad4-Taz axis as a new intrinsic regulator for adipo-osteogenic differentiation of MSCs and show that this function of Smad4 is independent of the transforming growth factor-ß signal. Smad4 directly bound to the Taz protein and facilitated nuclear localization of Taz through its nuclear localization signal. Nuclear retention of Taz by direct binding to Smad4 increased expression of osteogenic genes through enhancing Taz-runt-related transcription factor 2 (Runx2) interactions in the C3H10T1/2 MSC cell line and preosteoblastic MC3T3-E1 cells, whereas it suppressed expression of adipogenic genes through promoting Taz-peroxisome proliferator-activated receptor-γ (PPARγ) interaction in C3H10T1/2 and preadipogenic 3T3-L1 cells. A reciprocal role of the Smad4 in osteogenic and adipogenic differentiation was also observed in human adipose tissue-derived stem cells (hASCs). Consequently, Smad4 depletion in C3H10T1/2 and hASCs reduced nuclear retention of Taz and thus caused the decreased interaction with Runx2 or PPARγ, resulting in delayed osteogenesis or enhanced adipogenesis of the MSC. Therefore, these findings provide insight into a novel function of Smad4 to regulate the balance of MSC lineage commitment through reciprocal targeting of the Taz protein in osteogenic and adipogenic differentiation pathways. Stem Cells 2019;37:368-381.


Asunto(s)
Adipogénesis , Células Madre Mesenquimatosas/metabolismo , Osteogénesis , Transducción de Señal , Proteína Smad4/metabolismo , Transactivadores/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Diferenciación Celular , Línea Celular , Humanos , Células Madre Mesenquimatosas/citología , Ratones , Proteína Smad4/genética , Transactivadores/genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ
13.
Int J Mol Sci ; 21(6)2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-32210068

RESUMEN

Human microbiota is heavily involved in host health, including the aging process. Based on the hypothesis that the human microbiota manipulates host aging via the production of chemical messengers, lifespan-extending activities of the metabolites produced by the oral commensal bacterium Corynebacterium durum and derivatives thereof were evaluated using the model organism Caenorhabditis elegans. Chemical investigation of the acetone extract of a C. durum culture led to the identification of monoamines and N-acetyl monoamines as major metabolites. Phenethylamine and N-acetylphenethylamine induced a potent and dose-dependent increase of the C. elegans lifespan, up to 21.6% and 19.9%, respectively. A mechanistic study revealed that the induction of SIR-2.1, a highly conserved protein associated with the regulation of lifespan, was responsible for the observed increased longevity.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Corynebacterium/metabolismo , Expresión Génica , Longevidad , Metaboloma , Microbiota , Boca/microbiología , Sirtuinas/genética , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Longevidad/genética , Estructura Molecular , Sirtuinas/metabolismo
14.
J Am Chem Soc ; 141(38): 15327-15337, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31462037

RESUMEN

N,N-Diborylamines have emerged as promising reagents in organic synthesis; however, their efficient preparation and full synthetic utility have yet to be realized. To address both shortcomings, an effective catalyst for nitrile dihydroboration was sought. Heating CoCl2 in the presence of PyEtPDI afforded the six-coordinate Co(II) salt, [(PyEtPDI)CoCl][Cl]. Upon adding 2 equiv of NaEt3BH, hydride transfer to one chelate imine functionality was observed, resulting in the formation of (κ4-N,N,N,N-PyEtIPCHMeNEtPy)Co. Single-crystal X-ray diffraction and density functional theory calculations revealed that this compound possesses a low-spin Co(II) ground state featuring antiferromagnetic coupling to a singly reduced imino(pyridine) moiety. Importantly, (κ4-N,N,N,N-PyEtIPCHMeNEtPy)Co was found to catalyze the dihydroboration of nitriles using HBPin with turnover frequencies of up to 380 h-1 at ambient temperature. Stoichiometric addition experiments revealed that HBPin adds across the Co-Namide bond to generate a hydride intermediate that can react with additional HBPin or nitriles. Computational evaluation of the reaction coordinate revealed that the B-H addition and nitrile insertion steps occur on the antiferromagnetically coupled triplet spin manifold. Interestingly, formation of the borylimine intermediate was found to occur following BPin transfer from the borylated chelate arm to regenerate (κ4-N,N,N,N-PyEtIPCHMeNEtPy)Co. Borylimine reduction is in turn facile and follows the same ligand-assisted borylation pathway. The independent hydroboration of alkyl and aryl imines was also demonstrated at 25 °C. With a series of N,N-diborylamines in hand, their addition to carboxylic acids allowed for the direct synthesis of amides at 120 °C, without the need for an exogenous coupling reagent.

15.
Magn Reson Med ; 81(1): 702-710, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30058173

RESUMEN

PURPOSE: To obtain in vivo electrical conductivity images from multi-echo gradient-echo (mGRE) sequence using a zero-TE phase extrapolation algorithm based on the Kalman method. METHODS: For estimation of the zero-TE phase from the mGRE data, an iterative algorithm consisting of a combination of the Kalman filter, Kalman smoother, and expectation maximization was implemented and compared with linear extrapolation methods. Simulations were performed for verification, and phantom and in vivo studies were conducted for validation. RESULTS: Compared with the conventional method that linearly extrapolates the zero-TE phase from the mGRE data, the phase estimation of the proposed method was more stable in situations in which nonlinear phase evolution exists. Numerical simulation results showed that the stability is guaranteed under various nonlinearity levels. Phantom study results show that this method provides improved conductivity imaging compared with the conventional methods. In vivo results demonstrate conductivity images similar to spin echo-based conductivity images with the added benefit of the acquisition of susceptibility images when using mGRE. CONCLUSION: The proposed method improves zero-TE phase extrapolation, especially in regions of nonlinear phase evolution. Improved conductivity imaging using mGRE can be performed.


Asunto(s)
Conductividad Eléctrica , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Algoritmos , Encéfalo/diagnóstico por imagen , Simulación por Computador , Campos Electromagnéticos , Humanos , Modelos Lineales , Método de Montecarlo , Dinámicas no Lineales , Fantasmas de Imagen , Relación Señal-Ruido
16.
Magn Reson Med ; 81(3): 2167-2175, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30298524

RESUMEN

PURPOSE: To develop an electrical property tomography reconstruction method that achieves improvements over standard method by redesigning the Laplacian kernel. THEORY AND METHODS: A decomposition property of the governing PET equation shows the possibility of redesigning the Laplacian kernel for conductivity reconstruction. Hence, the discrete Laplacian operator used for electrical property tomography reconstruction is redesigned to have a Gaussian-like envelope, which enables manipulation of the spatial and spectral response. The characteristics of the proposed kernel are investigated through numerical simulations and in vivo brain experiments. RESULTS: The proposed method reduces textured noise, which hampers observing features of the conductivity image. Furthermore, the proposed scheme can mitigate the propagation of local phase error such as flow-induced phase. By doing so, the proposed method can recover feature information in conductivity (or resistivity) images. Lastly, the proposed kernel can be extended to other electrical property tomography reconstructions, improving the quality of images. CONCLUSION: An alternative design of the Laplacian kernel for conductivity imaging has been developed to mitigate the textured noise and the propagation of local phase artifact.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Tomografía/métodos , Algoritmos , Artefactos , Conductividad Eléctrica , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Modelos Estadísticos , Modelos Teóricos , Distribución Normal , Fantasmas de Imagen
17.
Sensors (Basel) ; 19(15)2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31374862

RESUMEN

This study addresses the problem of identifying the source location of a contaminant spill in a river system when a sensor network returns observations containing random measurement errors. To solve this problem, we suggest a new framework comprising three main steps: (i) spill detection, (ii) data preprocessing, and (iii) source identification. Specifically, we applied a statistical process control chart to detect a contaminant spill with measurement errors while keeping the false alarm rate at less than or equal to a user-specified value. After detecting a spill, we generated a nonlinear regression model to estimate a breakthrough curve of the observations and derive a characteristic vector of the estimated curve. Using the characteristic vector as an input, a random forest model was constructed with the sensor raising the first alarm. The model provides output values between 0 and 1 to represent the possibility of each candidate location being the true spill source. These possibility values allow users to identify strong candidate locations for the spill. The accuracy of our framework was tested on part of the Altamaha River system in Georgia, USA.

18.
Theriogenology ; 218: 193-199, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38330863

RESUMEN

The purpose of this study was to compare the efficiency of the production of cloned transgenic Yucatan miniature pigs (YMPs) using two recipient breeds, i.e., YMPs and domestic pigs (DPs), under various embryo transfer conditions. We initially assessed the in vitro developmental competence of embryos obtained via somatic cell nuclear transfer (SCNT) from three different transgenic donor cells. No difference was observed among the three groups regarding developmental competence. Furthermore, the cloning efficiency remained consistent among the three groups after the transfer of the SCNT embryos to each surrogate mother. Subsequently, to compare the efficiency of the production of cloned transgenic YMPs between the two recipient breeds using varying parameters, including ovulation status (preovulation and postovulation), duration of in vitro culture (IVC) (incubated within 24 h and 24-48 h), and the number of transferred SCNT embryos (less than and more than 300), we assessed the pregnancy rates, delivery rates, mean offspring counts, and cloning efficiency. Regarding the ovulation status, YMPs exhibited higher pregnancy rates, delivery rates, and cloning efficiency compared with DPs in both statuses. Moreover, the pregnancy rates, delivery rates, and cloning efficiency were affected by the ovulation status in DPs, but not in YMPs. The comparison of IVC duration between groups revealed that YMPs had higher pregnancy rates vs. DPs in both conditions. SCNT embryos cultured for 24-48 h in YMPs yielded higher delivery rates and cloning efficiency compared with those cultured for less than 24 h in DPs. Finally, the analysis based on the number of transferred SCNT embryos showed that both the pregnancy and delivery rates were higher in YMPs vs. DPs. However, the highest average number of offspring was obtained when more than 300 SCNT embryos were transferred into DPs, whereas the cloning efficiency was higher in YMPs vs. DPs. Our results suggest that YMPs are more suitable recipients than are DPs under various conditions for the production of cloned transgenic YMPs.


Asunto(s)
Clonación de Organismos , Técnicas de Transferencia Nuclear , Embarazo , Femenino , Porcinos/genética , Animales , Porcinos Enanos/genética , Animales Modificados Genéticamente , Clonación de Organismos/veterinaria , Clonación de Organismos/métodos , Técnicas de Transferencia Nuclear/veterinaria , Transferencia de Embrión/veterinaria , Transferencia de Embrión/métodos
19.
J Phys Chem Lett ; 14(13): 3329-3334, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36989527

RESUMEN

We employed the chemical potential equalization principle to demonstrate that fractional electrons are involved in the electro-inductive effect as well as the vibrational Stark effect. By the chemical potential model, we were able to deduce that the frontier molecular orbitals of immobilized molecules can provide valuable insight into these effects. To further understand and quantify these findings, we introduced fractional charge density functional theory (FC-DFT), a canonical ensemble approach for open systems. This method allows for the calculation of electronic energies, nuclear gradients, and the Hessian matrix of fractional electronic systems. To correct the spurious delocalization error commonly found in approximate density functionals for small systems, we imposed the Perdew-Parr-Levy-Balduz (PPLB) condition through linear interpolation of two adjacent integer points (LI-FC-DFT). Although this approach is relatively simple in terms of molecular modeling, the results obtained through LI-FC-DFT calculations predict the same trend seen in experimental reactivity and the frequency change of immobilized molecules.

20.
Materials (Basel) ; 17(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38203907

RESUMEN

The cement industry emits a significant amount of carbon dioxide (CO2). Therefore, the cement industry should recycle the emitted CO2. However, sequestration by carbonation in cement composites absorbs a very small amount of CO2. Therefore, a direct way of achieving this is to improve the absorption performance of CO2 in cement composites. In this study, to improve absorption, unlike in existing studies, a granulation technique was applied, and the material used was calcium hydroxide (CH). In addition, granulated CH was coated to prevent a reaction during the curing of cement paste. The coated CH granule (CCHG) was applied to 5% of the cement weight as an additive material, and the specimens were cured for 91 days to wait for the coating of CCHG to fully phase-change. The experiment of CO2 absorption showed an unexpected result, where the use of blast furnace slag (BFS) and fly ash (FA) had a negative effect on CO2 sequestration. This was because BFS and FA had a filler effect in the cement matrix, and the filler effect caused the blocking of the path of CO2. In addition, BFS and FA are well-known pozzolanic materials; the pozzolan reaction caused a reduction in the amount of CH because the pozzolan reaction consumed the CH to produce a calcium silicate hydrate. Therefore, the pozzolan reaction also had a negative effect on the CO2 sequestration performance combined with the filler effect. The CO2 sequestration efficiency was decreased between ordinary cement paste and BFS-applied specimens by 45.45%. In addition, compared to cases of ordinary cement paste and FA-applied specimens, the CO2 sequestration performance was decreased by 63.64%. Comprehensively, CO2 sequestration performance depends on the porosity and amount of CH.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA