Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 171(2): 321-330.e14, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28965763

RESUMEN

As organisms age, cells accumulate genetic and epigenetic errors that eventually lead to impaired organ function or catastrophic transformation such as cancer. Because aging reflects a stochastic process of increasing disorder, cells in an organ will be individually affected in different ways, thus rendering bulk analyses of postmitotic adult cells difficult to interpret. Here, we directly measure the effects of aging in human tissue by performing single-cell transcriptome analysis of 2,544 human pancreas cells from eight donors spanning six decades of life. We find that islet endocrine cells from older donors display increased levels of transcriptional noise and potential fate drift. By determining the mutational history of individual cells, we uncover a novel mutational signature in healthy aging endocrine cells. Our results demonstrate the feasibility of using single-cell RNA sequencing (RNA-seq) data from primary cells to derive insights into genetic and transcriptional processes that operate on aging human tissue.


Asunto(s)
Envejecimiento/patología , Senescencia Celular , Mutación , Páncreas/patología , Análisis de la Célula Individual , Adulto , Niño , Preescolar , Humanos , Lactante , Persona de Mediana Edad , Páncreas/citología , Páncreas/fisiología , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ARN , Transcripción Genética
2.
Genes Dev ; 35(17-18): 1243-1255, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34385262

RESUMEN

Multiple G protein-coupled receptors (GPCRs) are expressed in pancreatic islet cells, but the majority have unknown functions. We observed specific GPCRs localized to primary cilia, a prominent signaling organelle, in pancreatic α and ß cells. Loss of cilia disrupts ß-cell endocrine function, but the molecular drivers are unknown. Using functional expression, we identified multiple GPCRs localized to cilia in mouse and human islet α and ß cells, including FFAR4, PTGER4, ADRB2, KISS1R, and P2RY14. Free fatty acid receptor 4 (FFAR4) and prostaglandin E receptor 4 (PTGER4) agonists stimulate ciliary cAMP signaling and promote glucagon and insulin secretion by α- and ß-cell lines and by mouse and human islets. Transport of GPCRs to primary cilia requires TULP3, whose knockdown in primary human and mouse islets relocalized ciliary FFAR4 and PTGER4 and impaired regulated glucagon or insulin secretion, without affecting ciliary structure. Our findings provide index evidence that regulated hormone secretion by islet α and ß cells is controlled by ciliary GPCRs providing new targets for diabetes.


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , Animales , Glucagón/metabolismo , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Receptores Acoplados a Proteínas G/genética
3.
Genes Dev ; 35(3-4): 234-249, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33446570

RESUMEN

The physiological functions of many vital tissues and organs continue to mature after birth, but the genetic mechanisms governing this postnatal maturation remain an unsolved mystery. Human pancreatic ß cells produce and secrete insulin in response to physiological cues like glucose, and these hallmark functions improve in the years after birth. This coincides with expression of the transcription factors SIX2 and SIX3, whose functions in native human ß cells remain unknown. Here, we show that shRNA-mediated SIX2 or SIX3 suppression in human pancreatic adult islets impairs insulin secretion. However, transcriptome studies revealed that SIX2 and SIX3 regulate distinct targets. Loss of SIX2 markedly impaired expression of genes governing ß-cell insulin processing and output, glucose sensing, and electrophysiology, while SIX3 loss led to inappropriate expression of genes normally expressed in fetal ß cells, adult α cells, and other non-ß cells. Chromatin accessibility studies identified genes directly regulated by SIX2. Moreover, ß cells from diabetic humans with impaired insulin secretion also had reduced SIX2 transcript levels. Revealing how SIX2 and SIX3 govern functional maturation and maintain developmental fate in native human ß cells should advance ß-cell replacement and other therapeutic strategies for diabetes.


Asunto(s)
Diferenciación Celular/genética , Proteínas del Ojo/metabolismo , Regulación de la Expresión Génica/genética , Proteínas de Homeodominio/metabolismo , Células Secretoras de Insulina/citología , Proteínas del Tejido Nervioso/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Humanos , Secreción de Insulina/genética , ARN Interferente Pequeño/metabolismo , Transcriptoma , Proteína Homeobox SIX3
4.
PLoS Genet ; 19(2): e1010619, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36730473

RESUMEN

Insulin regulation is a hallmark of health, and impaired insulin signaling promotes metabolic diseases like diabetes mellitus. However, current assays for measuring insulin signaling in all animals remain semi-quantitative and lack the sensitivity, tissue-specificity or temporal resolution needed to quantify in vivo physiological signaling dynamics. Insulin signal transduction is remarkably conserved across metazoans, including insulin-dependent phosphorylation and regulation of Akt/Protein kinase B. Here, we generated transgenic fruit flies permitting tissue-specific expression of an immunoepitope-labelled Akt (AktHF). We developed enzyme-linked immunosorption assays (ELISA) to quantify picomolar levels of phosphorylated (pAktHF) and total AktHF in single flies, revealing dynamic tissue-specific physiological regulation of pAktHF in response to fasting and re-feeding, exogenous insulin, or targeted genetic suppression of established insulin signaling regulators. Genetic screening revealed Pp1-87B as an unrecognized regulator of Akt and insulin signaling. Tools and concepts here provide opportunities to discover tissue-specific regulators of in vivo insulin signaling responses.


Asunto(s)
Diabetes Mellitus , Resistencia a la Insulina , Animales , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Insulina/metabolismo , Drosophila/genética , Drosophila/metabolismo , Transducción de Señal/genética , Fosforilación , Resistencia a la Insulina/genética
5.
Proc Natl Acad Sci U S A ; 120(10): e2211937120, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36848578

RESUMEN

The vast majority of human pancreatic ductal adenocarcinomas (PDACs) harbor TP53 mutations, underscoring p53's critical role in PDAC suppression. PDAC can arise when pancreatic acinar cells undergo acinar-to-ductal metaplasia (ADM), giving rise to premalignant pancreatic intraepithelial neoplasias (PanINs), which finally progress to PDAC. The occurrence of TP53 mutations in late-stage PanINs has led to the idea that p53 acts to suppress malignant transformation of PanINs to PDAC. However, the cellular basis for p53 action during PDAC development has not been explored in detail. Here, we leverage a hyperactive p53 variant-p5353,54-which we previously showed is a more robust PDAC suppressor than wild-type p53, to elucidate how p53 acts at the cellular level to dampen PDAC development. Using both inflammation-induced and KRASG12D-driven PDAC models, we find that p5353,54 both limits ADM accumulation and suppresses PanIN cell proliferation and does so more effectively than wild-type p53. Moreover, p5353,54 suppresses KRAS signaling in PanINs and limits effects on the extracellular matrix (ECM) remodeling. While p5353,54 has highlighted these functions, we find that pancreata in wild-type p53 mice similarly show less ADM, as well as reduced PanIN cell proliferation, KRAS signaling, and ECM remodeling relative to Trp53-null mice. We find further that p53 enhances chromatin accessibility at sites controlled by acinar cell identity transcription factors. These findings reveal that p53 acts at multiple stages to suppress PDAC, both by limiting metaplastic transformation of acini and by dampening KRAS signaling in PanINs, thus providing key new understanding of p53 function in PDAC.


Asunto(s)
Neoplasias Pancreáticas , Lesiones Precancerosas , Humanos , Animales , Ratones , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteína p53 Supresora de Tumor/genética , Neoplasias Pancreáticas/genética , Páncreas , Metaplasia , Ratones Noqueados
6.
Proc Natl Acad Sci U S A ; 119(26): e2201267119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35733248

RESUMEN

Delineating gene regulatory networks that orchestrate cell-type specification is a continuing challenge for developmental biologists. Single-cell analyses offer opportunities to address these challenges and accelerate discovery of rare cell lineage relationships and mechanisms underlying hierarchical lineage decisions. Here, we describe the molecular analysis of mouse pancreatic endocrine cell differentiation using single-cell transcriptomics, chromatin accessibility assays coupled to genetic labeling, and cytometry-based cell purification. We uncover transcription factor networks that delineate ß-, α-, and δ-cell lineages. Through genomic footprint analysis, we identify transcription factor-regulatory DNA interactions governing pancreatic cell development at unprecedented resolution. Our analysis suggests that the transcription factor Neurog3 may act as a pioneer transcription factor to specify the pancreatic endocrine lineage. These findings could improve protocols to generate replacement endocrine cells from renewable sources, like stem cells, for diabetes therapy.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Cromatina , Islotes Pancreáticos , Proteínas del Tejido Nervioso , Transcriptoma , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/genética , Linaje de la Célula/genética , Cromatina/genética , Cromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Islotes Pancreáticos/crecimiento & desarrollo , Islotes Pancreáticos/metabolismo , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Análisis de la Célula Individual
7.
Development ; 147(6)2020 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-32108026

RESUMEN

Reliance on rodents for understanding pancreatic genetics, development and islet function could limit progress in developing interventions for human diseases such as diabetes mellitus. Similarities of pancreas morphology and function suggest that porcine and human pancreas developmental biology may have useful homologies. However, little is known about pig pancreas development. To fill this knowledge gap, we investigated fetal and neonatal pig pancreas at multiple, crucial developmental stages using modern experimental approaches. Purification of islet ß-, α- and δ-cells followed by transcriptome analysis (RNA-seq) and immunohistology identified cell- and stage-specific regulation, and revealed that pig and human islet cells share characteristic features that are not observed in mice. Morphometric analysis also revealed endocrine cell allocation and architectural similarities between pig and human islets. Our analysis unveiled scores of signaling pathways linked to native islet ß-cell functional maturation, including evidence of fetal α-cell GLP-1 production and signaling to ß-cells. Thus, the findings and resources detailed here show how pig pancreatic islet studies complement other systems for understanding the developmental programs that generate functional islet cells, and that are relevant to human pancreatic diseases.


Asunto(s)
Diferenciación Celular/genética , Células Secretoras de Insulina/fisiología , Islotes Pancreáticos/embriología , Islotes Pancreáticos/crecimiento & desarrollo , Porcinos , Animales , Animales Recién Nacidos , Células Cultivadas , Embrión de Mamíferos , Femenino , Feto/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Células Secretoras de Glucagón/citología , Células Secretoras de Glucagón/fisiología , Humanos , Islotes Pancreáticos/citología , Ratones , Organogénesis/genética , Embarazo , Porcinos/embriología , Porcinos/genética , Porcinos/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
8.
Genes Dev ; 29(20): 2097-107, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26494786

RESUMEN

Regenerative medicine aims to restore normal tissue architecture and function. However, the basis of tissue regeneration in mammalian solid organs remains undefined. Remarkably, mice lacking p21 fully regenerate injured ears without discernable scarring. Here we show that, in wild-type mice following tissue injury, stromal-derived factor-1 (Sdf1) is up-regulated in the wound epidermis and recruits Cxcr4-expressing leukocytes to the injury site. In p21-deficient mice, Sdf1 up-regulation and the subsequent recruitment of Cxcr4-expressing leukocytes are significantly diminished, thereby permitting scarless appendage regeneration. Lineage tracing demonstrates that this regeneration derives from fate-restricted progenitor cells. Pharmacological or genetic disruption of Sdf1-Cxcr4 signaling enhances tissue repair, including full reconstitution of tissue architecture and all cell types. Our findings identify signaling and cellular mechanisms underlying appendage regeneration in mice and suggest new therapeutic approaches for regenerative medicine.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Extremidades/fisiología , Compuestos Heterocíclicos/farmacología , Receptores CXCR4/antagonistas & inhibidores , Regeneración/efectos de los fármacos , Regeneración/fisiología , Cicatrización de Heridas/fisiología , Animales , Bencilaminas , Linaje de la Célula/genética , Quimiocina CXCL12/metabolismo , Ciclamas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Oído/lesiones , Oído/fisiología , Células Epidérmicas , Epidermis/lesiones , Epidermis/fisiología , Extremidades/lesiones , Queratinocitos/citología , Queratinocitos/metabolismo , Leucocitos/metabolismo , Ratones , Transporte de Proteínas/efectos de los fármacos , Receptores CXCR4/metabolismo , Regeneración/genética , Transducción de Señal/efectos de los fármacos , Cicatrización de Heridas/genética
9.
Genes Dev ; 29(14): 1576-85, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26178787

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a genomically diverse, prevalent, and almost invariably fatal malignancy. Although conventional genetically engineered mouse models of human PDAC have been instrumental in understanding pancreatic cancer development, these models are much too labor-intensive, expensive, and slow to perform the extensive molecular analyses needed to adequately understand this disease. Here we demonstrate that retrograde pancreatic ductal injection of either adenoviral-Cre or lentiviral-Cre vectors allows titratable initiation of pancreatic neoplasias that progress into invasive and metastatic PDAC. To enable in vivo CRISPR/Cas9-mediated gene inactivation in the pancreas, we generated a Cre-regulated Cas9 allele and lentiviral vectors that express Cre and a single-guide RNA. CRISPR-mediated targeting of Lkb1 in combination with oncogenic Kras expression led to selection for inactivating genomic alterations, absence of Lkb1 protein, and rapid tumor growth that phenocopied Cre-mediated genetic deletion of Lkb1. This method will transform our ability to rapidly interrogate gene function during the development of this recalcitrant cancer.


Asunto(s)
Adenocarcinoma/fisiopatología , Carcinoma Ductal Pancreático/fisiopatología , Modelos Animales de Enfermedad , Adenocarcinoma/genética , Animales , Carcinoma Ductal Pancreático/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Regulación Neoplásica de la Expresión Génica , Vectores Genéticos/genética , Genoma/genética , Humanos , Lentivirus/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
10.
Gastroenterology ; 160(4): 1330-1344.e11, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33212097

RESUMEN

BACKGROUND & AIMS: Molecular evidence of cellular heterogeneity in the human exocrine pancreas has not been yet established because of the local concentration and cascade of hydrolytic enzymes that can rapidly degrade cells and RNA upon pancreatic resection. We sought to better understand the heterogeneity and cellular composition of the pancreas in neonates and adults in healthy and diseased conditions using single-cell sequencing approaches. METHODS: We innovated single-nucleus RNA-sequencing protocols and profiled more than 120,000 cells from pancreata of adult and neonatal human donors. We validated the single-nucleus findings using RNA fluorescence in situ hybridization, in situ sequencing, and computational approaches. RESULTS: We created the first comprehensive atlas of human pancreas cells including epithelial and nonepithelial constituents, and uncovered 3 distinct acinar cell types, with possible implications for homeostatic and inflammatory processes of the pancreas. The comparison with neonatal single-nucleus sequencing data showed a different cellular composition of the endocrine tissue, highlighting the tissue dynamics occurring during development. By applying spatial cartography, involving cell proximity mapping through in situ sequencing, we found evidence of specific cell type neighborhoods, dynamic topographies in the endocrine and exocrine pancreas, and principles of morphologic organization of the organ. Furthermore, similar analyses in chronic pancreatitis biopsy samples showed the presence of acinar-REG+ cells, a reciprocal association between macrophages and activated stellate cells, and a new potential role of tuft cells in this disease. CONCLUSIONS: Our human pancreas cell atlas can be interrogated to understand pancreatic cell biology and provides a crucial reference set for comparisons with diseased tissue samples to map the cellular foundations of pancreatic diseases.


Asunto(s)
Núcleo Celular/metabolismo , Páncreas Exocrino/citología , Adolescente , Adulto , Factores de Edad , Anciano , Animales , Fraccionamiento Celular , Niño , Preescolar , Femenino , Humanos , Hibridación Fluorescente in Situ , Lactante , Masculino , Persona de Mediana Edad , Modelos Animales , Páncreas Exocrino/crecimiento & desarrollo , Páncreas Exocrino/metabolismo , RNA-Seq , Análisis de la Célula Individual/métodos , Porcinos , Adulto Joven
11.
Development ; 144(20): 3744-3754, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28893946

RESUMEN

The islets of Langerhans are endocrine organs characteristically dispersed throughout the pancreas. During development, endocrine progenitors delaminate, migrate radially and cluster to form islets. Despite the distinctive distribution of islets, spatially localized signals that control islet morphogenesis have not been discovered. Here, we identify a radial signaling axis that instructs developing islet cells to disperse throughout the pancreas. A screen of pancreatic extracellular signals identified factors that stimulated islet cell development. These included semaphorin 3a, a guidance cue in neural development without known functions in the pancreas. In the fetal pancreas, peripheral mesenchymal cells expressed Sema3a, while central nascent islet cells produced the semaphorin receptor neuropilin 2 (Nrp2). Nrp2 mutant islet cells developed in proper numbers, but had defects in migration and were unresponsive to purified Sema3a. Mutant Nrp2 islets aggregated centrally and failed to disperse radially. Thus, Sema3a-Nrp2 signaling along an unrecognized pancreatic developmental axis constitutes a chemoattractant system essential for generating the hallmark morphogenetic properties of pancreatic islets. Unexpectedly, Sema3a- and Nrp2-mediated control of islet morphogenesis is strikingly homologous to mechanisms that regulate radial neuronal migration and cortical lamination in the developing mammalian brain.


Asunto(s)
Islotes Pancreáticos/citología , Neuropilina-2/metabolismo , Semaforina-3A/metabolismo , Animales , Adhesión Celular , Movimiento Celular , Factores Quimiotácticos/química , Regulación del Desarrollo de la Expresión Génica , Humanos , Ligandos , Ratones , Ratones Noqueados , Morfogénesis , Mutación , Neuronas/metabolismo , Neuropilina-2/genética , Páncreas/citología , Semaforina-3A/genética , Transducción de Señal
12.
Nature ; 478(7369): 349-55, 2011 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-21993628

RESUMEN

Determining the signalling pathways that direct tissue expansion is a principal goal of regenerative biology. Vigorous pancreatic ß-cell replication in juvenile mice and humans declines with age, and elucidating the basis for this decay may reveal strategies for inducing ß-cell expansion, a long-sought goal for diabetes therapy. Here we show that platelet-derived growth factor receptor (Pdgfr) signalling controls age-dependent ß-cell proliferation in mouse and human pancreatic islets. With age, declining ß-cell Pdgfr levels were accompanied by reductions in ß-cell enhancer of zeste homologue 2 (Ezh2) levels and ß-cell replication. Conditional inactivation of the Pdgfra gene in ß-cells accelerated these changes, preventing mouse neonatal ß-cell expansion and adult ß-cell regeneration. Targeted human PDGFR-α activation in mouse ß-cells stimulated Erk1/2 phosphorylation, leading to Ezh2-dependent expansion of adult ß-cells. Adult human islets lack PDGF signalling competence, but exposure of juvenile human islets to PDGF-AA stimulated ß-cell proliferation. The discovery of a conserved pathway controlling age-dependent ß-cell proliferation indicates new strategies for ß-cell expansion.


Asunto(s)
Células Secretoras de Insulina/citología , Células Secretoras de Insulina/fisiología , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal , Factores de Edad , Animales , Proliferación Celular , Células Cultivadas , Diabetes Mellitus Experimental/patología , Factores de Transcripción E2F/metabolismo , Proteína Potenciadora del Homólogo Zeste 2 , Femenino , Regulación Enzimológica de la Expresión Génica , Técnicas de Inactivación de Genes , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Células Secretoras de Insulina/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Complejo Represivo Polycomb 2 , Proteína de Retinoblastoma/metabolismo
13.
PLoS Genet ; 10(8): e1004555, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25101872

RESUMEN

Insulin is a major regulator of metabolism in metazoans, including the fruit fly Drosophila melanogaster. Genome-wide association studies (GWAS) suggest a genetic basis for reductions of both insulin sensitivity and insulin secretion, phenotypes commonly observed in humans with type 2 diabetes mellitus (T2DM). To identify molecular functions of genes linked to T2DM risk, we developed a genetic tool to measure insulin-like peptide 2 (Ilp2) levels in Drosophila, a model organism with superb experimental genetics. Our system permitted sensitive quantification of circulating Ilp2, including measures of Ilp2 dynamics during fasting and re-feeding, and demonstration of adaptive Ilp2 secretion in response to insulin receptor haploinsufficiency. Tissue specific dissection of this reduced insulin signaling phenotype revealed a critical role for insulin signaling in specific peripheral tissues. Knockdown of the Drosophila orthologues of human T2DM risk genes, including GLIS3 and BCL11A, revealed roles of these Drosophila genes in Ilp2 production or secretion. Discovery of Drosophila mechanisms and regulators controlling in vivo insulin dynamics should accelerate functional dissection of diabetes genetics.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Insulina/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas de Unión al ADN , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ayuno , Técnicas de Silenciamiento del Gen , Estudio de Asociación del Genoma Completo , Humanos , Insulina/biosíntesis , Insulina/genética , Resistencia a la Insulina/genética , Secreción de Insulina , Neuropéptidos , Proteínas Nucleares/genética , Proteínas Represoras , Transducción de Señal/genética , Transactivadores , Factores de Transcripción/genética
14.
PLoS Genet ; 10(10): e1004645, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25330008

RESUMEN

The regulatory logic underlying global transcriptional programs controlling development of visceral organs like the pancreas remains undiscovered. Here, we profiled gene expression in 12 purified populations of fetal and adult pancreatic epithelial cells representing crucial progenitor cell subsets, and their endocrine or exocrine progeny. Using probabilistic models to decode the general programs organizing gene expression, we identified co-expressed gene sets in cell subsets that revealed patterns and processes governing progenitor cell development, lineage specification, and endocrine cell maturation. Purification of Neurog3 mutant cells and module network analysis linked established regulators such as Neurog3 to unrecognized gene targets and roles in pancreas development. Iterative module network analysis nominated and prioritized transcriptional regulators, including diabetes risk genes. Functional validation of a subset of candidate regulators with corresponding mutant mice revealed that the transcription factors Etv1, Prdm16, Runx1t1 and Bcl11a are essential for pancreas development. Our integrated approach provides a unique framework for identifying regulatory genes and functional gene sets underlying pancreas development and associated diseases such as diabetes mellitus.


Asunto(s)
Separación Celular/métodos , Regulación del Desarrollo de la Expresión Génica , Páncreas/citología , Páncreas/embriología , Páncreas/crecimiento & desarrollo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Genómica/métodos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/fisiología , Ratones Mutantes , Ratones Transgénicos , Modelos Estadísticos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Reproducibilidad de los Resultados , Factor de Transcripción SOX9/genética , Células Madre/citología , Células Madre/fisiología
15.
Genes Dev ; 23(8): 975-85, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19390090

RESUMEN

Proliferation of pancreatic islet beta cells is an important mechanism for self-renewal and for adaptive islet expansion. Increased expression of the Ink4a/Arf locus, which encodes the cyclin-dependent kinase inhibitor p16(INK4a) and tumor suppressor p19(Arf), limits beta-cell regeneration in aging mice, but the basis of beta-cell Ink4a/Arf regulation is poorly understood. Here we show that Enhancer of zeste homolog 2 (Ezh2), a histone methyltransferase and component of a Polycomb group (PcG) protein complex, represses Ink4a/Arf in islet beta cells. Ezh2 levels decline in aging islet beta cells, and this attrition coincides with reduced histone H3 trimethylation at Ink4a/Arf, and increased levels of p16(INK4a) and p19(Arf). Conditional deletion of beta-cell Ezh2 in juvenile mice also reduced H3 trimethylation at the Ink4a/Arf locus, leading to precocious increases of p16(INK4a) and p19(Arf). These mutant mice had reduced beta-cell proliferation and mass, hypoinsulinemia, and mild diabetes, phenotypes rescued by germline deletion of Ink4a/Arf. beta-Cell destruction with streptozotocin in controls led to increased Ezh2 expression that accompanied adaptive beta-cell proliferation and re-establishment of beta-cell mass; in contrast, mutant mice treated similarly failed to regenerate beta cells, resulting in lethal diabetes. Our discovery of Ezh2-dependent beta-cell proliferation revealed unique epigenetic mechanisms underlying normal beta-cell expansion and beta-cell regenerative failure in diabetes pathogenesis.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Diabetes Mellitus/metabolismo , Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/metabolismo , Células Secretoras de Insulina/metabolismo , Envejecimiento/metabolismo , Animales , Antibióticos Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Proteína Potenciadora del Homólogo Zeste 2 , Femenino , Eliminación de Gen , Regulación de la Expresión Génica/efectos de los fármacos , Histonas/metabolismo , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Complejo Represivo Polycomb 2 , Estreptozocina/farmacología
16.
J Vasc Interv Radiol ; 27(12): 1890-1896, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27595470

RESUMEN

PURPOSE: To describe technical details, success rate, and advantages of direct puncture of the thoracic duct (TD) under direct ultrasound (US) guidance at venous insertion in the left neck. MATERIALS AND METHODS: All patients who underwent attempted thoracic duct embolization (TDE) via US-guided retrograde TD access in the left neck were retrospectively reviewed. Indications for lymphangiography were iatrogenic chyle leak, pulmonary lymphangiectasia, and plastic bronchitis. Ten patients with mean age 41.4 years (range, 21 d to 72 y) underwent US-guided TD access via the left neck. Technical details, procedural times, and clinical outcomes were evaluated. TD access time was defined as time from start of procedure to successful access of TD, and total procedural time was defined from start of procedure until TDE. RESULTS: All attempts at TD access via the neck were successful. Technical and clinical success of TDE was 60%. There were no complications. Mean TD access time was 17 minutes (range, 2-47 min), and mean total procedure time was 49 minutes (range, 25-69 min). Mean follow-up time was 5.4 months (range, 3-10 months). CONCLUSIONS: TDE via US-guided access in the left neck is technically feasible and safe with a potential decrease in procedure time and elimination of oil-based contrast material.


Asunto(s)
Quilotórax/terapia , Embolización Terapéutica/métodos , Linfografía , Conducto Torácico/diagnóstico por imagen , Ultrasonografía Intervencional , Adolescente , Adulto , Anciano , Bronquitis/complicaciones , Quilotórax/diagnóstico por imagen , Quilotórax/etiología , Estudios de Factibilidad , Femenino , Humanos , Enfermedad Iatrogénica , Lactante , Recién Nacido , Enfermedades Pulmonares/complicaciones , Enfermedades Pulmonares/congénito , Linfangiectasia/complicaciones , Linfangiectasia/congénito , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Punciones , Estudios Retrospectivos , Factores de Tiempo , Resultado del Tratamiento
17.
Proc Natl Acad Sci U S A ; 110(31): 12691-6, 2013 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-23852729

RESUMEN

Developmental biology is challenged to reveal the function of numerous candidate genes implicated by recent genome-scale studies as regulators of organ development and diseases. Recapitulating organogenesis from purified progenitor cells that can be genetically manipulated would provide powerful opportunities to dissect such gene functions. Here we describe systems for reconstructing pancreas development, including islet ß-cell and α-cell differentiation, from single fetal progenitor cells. A strict requirement for native genetic regulators of in vivo pancreas development, such as Ngn3, Arx, and Pax4, revealed the authenticity of differentiation programs in vitro. Efficient genetic screens permitted by this system revealed that Prdm16 is required for pancreatic islet development in vivo. Discovering the function of genes regulating pancreas development with our system should enrich strategies for regenerating islets for treating diabetes mellitus.


Asunto(s)
Diferenciación Celular , Células Secretoras de Glucagón/metabolismo , Células Secretoras de Insulina/metabolismo , Células Madre/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/terapia , Femenino , Células Secretoras de Glucagón/citología , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Células Secretoras de Insulina/citología , Masculino , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Factores de Transcripción Paired Box/biosíntesis , Factores de Transcripción Paired Box/genética , Células Madre/citología , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética
19.
PLoS Genet ; 7(8): e1002241, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21901108

RESUMEN

Drosophila neuroendocrine cells comprising the corpora cardiaca (CC) are essential for systemic glucose regulation and represent functional orthologues of vertebrate pancreatic α-cells. Although Drosophila CC cells have been regarded as developmental orthologues of pituitary gland, the genetic regulation of CC development is poorly understood. From a genetic screen, we identified multiple novel regulators of CC development, including Notch signaling factors. Our studies demonstrate that the disruption of Notch signaling can lead to the expansion of CC cells. Live imaging demonstrates localized emergence of extra precursor cells as the basis of CC expansion in Notch mutants. Contrary to a recent report, we unexpectedly found that CC cells originate from head mesoderm. We show that Tinman expression in head mesoderm is regulated by Notch signaling and that the combination of Daughterless and Tinman is sufficient for ectopic CC specification in mesoderm. Understanding the cellular, genetic, signaling, and transcriptional basis of CC cell specification and expansion should accelerate discovery of molecular mechanisms regulating ontogeny of organs that control metabolism.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Células Neuroendocrinas/citología , Sistemas Neurosecretores/embriología , Receptores Notch/metabolismo , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Tipificación del Cuerpo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Glucosa/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , Células Neuroendocrinas/metabolismo , Sistemas Neurosecretores/citología , Receptores Notch/genética , Proteínas Represoras/genética , Transducción de Señal , Transactivadores/genética
20.
iScience ; 27(1): 108693, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38205242

RESUMEN

Successful genome editing in primary human islets could reveal features of the genetic regulatory landscape underlying ß cell function and diabetes risk. Here, we describe a CRISPR-based strategy to interrogate functions of predicted regulatory DNA elements using electroporation of a complex of Cas9 ribonucleoprotein (Cas9 RNP) and guide RNAs into primary human islet cells. We successfully targeted coding regions including the PDX1 exon 1, and non-coding DNA linked to diabetes susceptibility. CRISPR-Cas9 RNP approaches revealed genetic targets of regulation by DNA elements containing candidate diabetes risk SNPs, including an in vivo enhancer of the MPHOSPH9 gene. CRISPR-Cas9 RNP multiplexed targeting of two cis-regulatory elements linked to diabetes risk in PCSK1, which encodes an endoprotease crucial for Insulin processing, also demonstrated efficient simultaneous editing of PCSK1 regulatory elements, resulting in impaired ß cell PCSK1 regulation and Insulin secretion. Multiplex CRISPR-Cas9 RNP provides powerful approaches to investigate and elucidate human islet cell gene regulation in health and diabetes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA