Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell ; 185(1): 9-41, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34995519

RESUMEN

Recent progress in fluorescence imaging allows neuroscientists to observe the dynamics of thousands of individual neurons, identified genetically or by their connectivity, across multiple brain areas and for extended durations in awake behaving mammals. We discuss advances in fluorescent indicators of neural activity, viral and genetic methods to express these indicators, chronic animal preparations for long-term imaging studies, and microscopes to monitor and manipulate the activity of large neural ensembles. Ca2+ imaging studies of neural activity can track brain area interactions and distributed information processing at cellular resolution. Across smaller spatial scales, high-speed voltage imaging reveals the distinctive spiking patterns and coding properties of targeted neuron types. Collectively, these innovations will propel studies of brain function and dovetail with ongoing neuroscience initiatives to identify new neuron types and develop widely applicable, non-human primate models. The optical toolkit's growing sophistication also suggests that "brain observatory" facilities would be useful open resources for future brain-imaging studies.


Asunto(s)
Mapeo Encefálico/métodos , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Neocórtex/diagnóstico por imagen , Neocórtex/metabolismo , Neuronas/metabolismo , Imagen Óptica/métodos , Animales , Calcio/metabolismo , Ratones , Modelos Animales , Neurociencias/métodos
2.
Cell ; 184(14): 3731-3747.e21, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34214470

RESUMEN

In motor neuroscience, state changes are hypothesized to time-lock neural assemblies coordinating complex movements, but evidence for this remains slender. We tested whether a discrete change from more autonomous to coherent spiking underlies skilled movement by imaging cerebellar Purkinje neuron complex spikes in mice making targeted forelimb-reaches. As mice learned the task, millimeter-scale spatiotemporally coherent spiking emerged ipsilateral to the reaching forelimb, and consistent neural synchronization became predictive of kinematic stereotypy. Before reach onset, spiking switched from more disordered to internally time-locked concerted spiking and silence. Optogenetic manipulations of cerebellar feedback to the inferior olive bi-directionally modulated neural synchronization and reaching direction. A simple model explained the reorganization of spiking during reaching as reflecting a discrete bifurcation in olivary network dynamics. These findings argue that to prepare learned movements, olivo-cerebellar circuits enter a self-regulated, synchronized state promoting motor coordination. State changes facilitating behavioral transitions may generalize across neural systems.


Asunto(s)
Movimiento/fisiología , Red Nerviosa/fisiología , Potenciales de Acción/fisiología , Animales , Calcio/metabolismo , Cerebelo/fisiología , Sincronización Cortical , Miembro Anterior/fisiología , Interneuronas/fisiología , Aprendizaje , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Neurológicos , Actividad Motora/fisiología , Núcleo Olivar/fisiología , Optogenética , Células de Purkinje/fisiología , Conducta Estereotipada , Análisis y Desempeño de Tareas
3.
Cell ; 177(3): 669-682.e24, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30929904

RESUMEN

Throughout mammalian neocortex, layer 5 pyramidal (L5) cells project via the pons to a vast number of cerebellar granule cells (GrCs), forming a fundamental pathway. Yet, it is unknown how neuronal dynamics are transformed through the L5→GrC pathway. Here, by directly comparing premotor L5 and GrC activity during a forelimb movement task using dual-site two-photon Ca2+ imaging, we found that in expert mice, L5 and GrC dynamics were highly similar. L5 cells and GrCs shared a common set of task-encoding activity patterns, possessed similar diversity of responses, and exhibited high correlations comparable to local correlations among L5 cells. Chronic imaging revealed that these dynamics co-emerged in cortex and cerebellum over learning: as behavioral performance improved, initially dissimilar L5 cells and GrCs converged onto a shared, low-dimensional, task-encoding set of neural activity patterns. Thus, a key function of cortico-cerebellar communication is the propagation of shared dynamics that emerge during learning.


Asunto(s)
Cerebelo/metabolismo , Neocórtex/metabolismo , Animales , Conducta Animal , Calcio/metabolismo , Miembro Anterior/fisiología , Ratones , Ratones Transgénicos , Microscopía de Fluorescencia por Excitación Multifotónica , Neocórtex/patología , Opsinas/genética , Opsinas/metabolismo , Células Piramidales/metabolismo
4.
Nature ; 557(7704): 177-182, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29720658

RESUMEN

Loss of dopamine in Parkinson's disease is hypothesized to impede movement by inducing hypo- and hyperactivity in striatal spiny projection neurons (SPNs) of the direct (dSPNs) and indirect (iSPNs) pathways in the basal ganglia, respectively. The opposite imbalance might underlie hyperkinetic abnormalities, such as dyskinesia caused by treatment of Parkinson's disease with the dopamine precursor L-DOPA. Here we monitored thousands of SPNs in behaving mice, before and after dopamine depletion and during L-DOPA-induced dyskinesia. Normally, intermingled clusters of dSPNs and iSPNs coactivated before movement. Dopamine depletion unbalanced SPN activity rates and disrupted the movement-encoding iSPN clusters. Matching their clinical efficacy, L-DOPA or agonism of the D2 dopamine receptor reversed these abnormalities more effectively than agonism of the D1 dopamine receptor. The opposite pathophysiology arose in L-DOPA-induced dyskinesia, during which iSPNs showed hypoactivity and dSPNs showed unclustered hyperactivity. Therefore, both the spatiotemporal profiles and rates of SPN activity appear crucial to striatal function, and next-generation treatments for basal ganglia disorders should target both facets of striatal activity.


Asunto(s)
Dopamina/metabolismo , Discinesias/patología , Discinesias/fisiopatología , Neuronas/metabolismo , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/fisiopatología , Animales , Señalización del Calcio , Dopamina/deficiencia , Discinesias/etiología , Discinesias/metabolismo , Femenino , Levodopa/metabolismo , Levodopa/farmacología , Masculino , Ratones , Modelos Biológicos , Movimiento/efectos de los fármacos , Neostriado/metabolismo , Neostriado/patología , Neostriado/fisiopatología , Trastornos Parkinsonianos/metabolismo , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34088841

RESUMEN

Cerebellar granule cells (GrCs) are usually regarded as a uniform cell type that collectively expands the coding space of the cerebellum by integrating diverse combinations of mossy fiber inputs. Accordingly, stable molecularly or physiologically defined GrC subtypes within a single cerebellar region have not been reported. The only known cellular property that distinguishes otherwise homogeneous GrCs is the correspondence between GrC birth timing and the depth of the molecular layer to which their axons project. To determine the role birth timing plays in GrC wiring and function, we developed genetic strategies to access early- and late-born GrCs. We initiated retrograde monosynaptic rabies virus tracing from control (birth timing unrestricted), early-born, and late-born GrCs, revealing the different patterns of mossy fiber input to GrCs in vermis lobule 6 and simplex, as well as to early- and late-born GrCs of vermis lobule 6: sensory and motor nuclei provide more input to early-born GrCs, while basal pontine and cerebellar nuclei provide more input to late-born GrCs. In vivo multidepth two-photon Ca2+ imaging of axons of early- and late-born GrCs revealed representations of diverse task variables and stimuli by both populations, with modest differences in the proportions encoding movement, reward anticipation, and reward consumption. Our results suggest neither organized parallel processing nor completely random organization of mossy fiber→GrC circuitry but instead a moderate influence of birth timing on GrC wiring and encoding. Our imaging data also provide evidence that GrCs can represent generalized responses to aversive stimuli, in addition to recently described reward representations.


Asunto(s)
Corteza Cerebelosa/crecimiento & desarrollo , Fibras Nerviosas/metabolismo , Animales , Animales Recién Nacidos , Corteza Cerebelosa/virología , Ratones , Ratones Transgénicos , Fibras Nerviosas/virología , Virus de la Rabia/metabolismo
6.
Nature ; 544(7648): 96-100, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28321129

RESUMEN

The human brain contains approximately 60 billion cerebellar granule cells, which outnumber all other brain neurons combined. Classical theories posit that a large, diverse population of granule cells allows for highly detailed representations of sensorimotor context, enabling downstream Purkinje cells to sense fine contextual changes. Although evidence suggests a role for the cerebellum in cognition, granule cells are known to encode only sensory and motor context. Here, using two-photon calcium imaging in behaving mice, we show that granule cells convey information about the expectation of reward. Mice initiated voluntary forelimb movements for delayed sugar-water reward. Some granule cells responded preferentially to reward or reward omission, whereas others selectively encoded reward anticipation. Reward responses were not restricted to forelimb movement, as a Pavlovian task evoked similar responses. Compared to predictable rewards, unexpected rewards elicited markedly different granule cell activity despite identical stimuli and licking responses. In both tasks, reward signals were widespread throughout multiple cerebellar lobules. Tracking the same granule cells over several days of learning revealed that cells with reward-anticipating responses emerged from those that responded at the start of learning to reward delivery, whereas reward-omission responses grew stronger as learning progressed. The discovery of predictive, non-sensorimotor encoding in granule cells is a major departure from the current understanding of these neurons and markedly enriches the contextual information available to postsynaptic Purkinje cells, with important implications for cognitive processing in the cerebellum.


Asunto(s)
Anticipación Psicológica/fisiología , Cerebelo/citología , Cerebelo/fisiología , Aprendizaje/fisiología , Neuronas/fisiología , Recompensa , Animales , Conducta Animal/fisiología , Calcio/análisis , Calcio/metabolismo , Cognición/fisiología , Condicionamiento Clásico/fisiología , Condicionamiento Operante/fisiología , Femenino , Miembro Anterior/fisiología , Masculino , Ratones , Imagen Molecular , Movimiento , Células de Purkinje/fisiología
7.
Neuron ; 112(16): 2749-2764.e7, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-38870929

RESUMEN

In classical cerebellar learning, Purkinje cells (PkCs) associate climbing fiber (CF) error signals with predictive granule cells (GrCs) that were active just prior (∼150 ms). The cerebellum also contributes to behaviors characterized by longer timescales. To investigate how GrC-CF-PkC circuits might learn seconds-long predictions, we imaged simultaneous GrC-CF activity over days of forelimb operant conditioning for delayed water reward. As mice learned reward timing, numerous GrCs developed anticipatory activity ramping at different rates until reward delivery, followed by widespread time-locked CF spiking. Relearning longer delays further lengthened GrC activations. We computed CF-dependent GrC→PkC plasticity rules, demonstrating that reward-evoked CF spikes sufficed to grade many GrC synapses by anticipatory timing. We predicted and confirmed that PkCs could thereby continuously ramp across seconds-long intervals from movement to reward. Learning thus leads to new GrC temporal bases linking predictors to remote CF reward signals-a strategy well suited for learning to track the long intervals common in cognitive domains.


Asunto(s)
Cerebelo , Aprendizaje , Células de Purkinje , Recompensa , Animales , Cerebelo/fisiología , Cerebelo/citología , Ratones , Células de Purkinje/fisiología , Aprendizaje/fisiología , Condicionamiento Operante/fisiología , Masculino , Ratones Endogámicos C57BL , Fibras Nerviosas/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Factores de Tiempo , Potenciales de Acción/fisiología
8.
Nat Protoc ; 15(3): 1237-1254, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32034393

RESUMEN

Skilled forelimb behaviors are among the most important for studying motor learning in multiple species including humans. This protocol describes learned forelimb tasks for mice using a two-axis robotic manipulandum. Our device provides a highly compact adaptation of actuated planar two-axis arms that is simple and inexpensive to construct. This paradigm has been dominant for decades in primate motor neuroscience. Our device can generate arbitrary virtual movement tracks, arbitrary time-varying forces or arbitrary position- or velocity-dependent force patterns. We describe several example tasks permitted by our device, including linear movements, movement sequences and aiming movements. We provide the mechanical drawings and source code needed to assemble and control the device, and detail the procedure to train mice to use the device. Our software can be simply extended to allow users to program various customized movement assays. The device can be assembled in a few days, and the time to train mice on the tasks that we describe ranges from a few days to several weeks. Furthermore, the device is compatible with various neurophysiological techniques that require head fixation.


Asunto(s)
Miembro Anterior , Movimiento , Desempeño Psicomotor/fisiología , Robótica/instrumentación , Robótica/métodos , Animales , Fenómenos Biomecánicos , Cabeza , Ratones
9.
Neuron ; 98(6): 1099-1115.e8, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29887338

RESUMEN

Perceptions, thoughts, and actions unfold over millisecond timescales, while learned behaviors can require many days to mature. While recent experimental advances enable large-scale and long-term neural recordings with high temporal fidelity, it remains a formidable challenge to extract unbiased and interpretable descriptions of how rapid single-trial circuit dynamics change slowly over many trials to mediate learning. We demonstrate a simple tensor component analysis (TCA) can meet this challenge by extracting three interconnected, low-dimensional descriptions of neural data: neuron factors, reflecting cell assemblies; temporal factors, reflecting rapid circuit dynamics mediating perceptions, thoughts, and actions within each trial; and trial factors, describing both long-term learning and trial-to-trial changes in cognitive state. We demonstrate the broad applicability of TCA by revealing insights into diverse datasets derived from artificial neural networks, large-scale calcium imaging of rodent prefrontal cortex during maze navigation, and multielectrode recordings of macaque motor cortex during brain machine interface learning.


Asunto(s)
Interfaces Cerebro-Computador , Corteza Motora/fisiología , Redes Neurales de la Computación , Corteza Prefrontal/fisiología , Navegación Espacial/fisiología , Aprendizaje Automático no Supervisado , Animales , Macaca mulatta , Ratones , Análisis de Componente Principal , Factores de Tiempo
10.
Cell Rep ; 17(12): 3385-3394, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-28009304

RESUMEN

A major technological goal in neuroscience is to enable the interrogation of individual cells across the live brain. By creating a curved glass replacement to the dorsal cranium and surgical methods for its installation, we developed a chronic mouse preparation providing optical access to an estimated 800,000-1,100,000 individual neurons across the dorsal surface of neocortex. Post-surgical histological studies revealed comparable glial activation as in control mice. In behaving mice expressing a Ca2+ indicator in cortical pyramidal neurons, we performed Ca2+ imaging across neocortex using an epi-fluorescence macroscope and estimated that 25,000-50,000 individual neurons were accessible per mouse across multiple focal planes. Two-photon microscopy revealed dendritic morphologies throughout neocortex, allowed time-lapse imaging of individual cells, and yielded estimates of >1 million accessible neurons per mouse by serial tiling. This approach supports a variety of optical techniques and enables studies of cells across >30 neocortical areas in behaving mice.


Asunto(s)
Dendritas/ultraestructura , Espinas Dendríticas/ultraestructura , Neocórtex/ultraestructura , Células Piramidales/ultraestructura , Animales , Calcio/química , Ratones , Microscopía Fluorescente , Análisis de la Célula Individual , Imagen de Lapso de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA