Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36904840

RESUMEN

A method to enhance laser ultrasound (LUS) image reconstruction with the time-domain synthetic aperture focusing technique (T-SAFT) is presented, in which the acoustic velocity is extracted in situ with curve fitting. The operational principle is provided with the help of a numerical simulation, and the confirmation is provided experimentally. In these experiments, an all-optic LUS system was developed by using lasers for both excitation and detection of ultrasound. The acoustic velocity of a specimen was extracted in situ by fitting a hyperbolic curve to its B-scan image. The needle-like objects embedded within a polydimethylsiloxane (PDMS) block and a chicken breast have been successfully reconstructed using the extracted in situ acoustic velocity. Experimental results suggest that knowing the acoustic velocity in the T-SAFT process is important not only in finding the depth location of the target object but also for producing a high resolution image. This study is expected to pave the wave to the development and usage of all-optic LUS for bio-medical imaging.

2.
Sensors (Basel) ; 20(9)2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32392780

RESUMEN

We propose a nanometer-scale displacement or vibration measurement system, using an optical quadrature interferometer and the post-processing technique that extracts the parameters necessary for characterizing the interferometric system. Using a 3 × 3 fiber-optic coupler, the entire complex interference signal could be reconstructed with two interference signals measured at two return ports of the coupler. The intrinsic phase difference between the return ports was utilized to obtain the quadratic part of the interference signal, which allowed one to reconstruct the entire complex interference signal. However, the two measured signals were appreciably affected by the unequal detector gains and non-uniform intrinsic phases of the coupler. Fortunately, we could find that the Lissajous curve plotted by the two signals of the interferometric system would form an ellipse. Therefore, by fitting the measured Lissajous curve to an ellipse, we could extract the parameters characterizing the actual system, which allowed the nanometer-scale measurement. Experimental results showed that a 20 kHz sinusoidal vibration with an amplitude of 1.5 nm could be measured with a standard deviation of 0.4 nm.

3.
Opt Lett ; 44(10): 2590-2593, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31090739

RESUMEN

A noncontact photoacoustic imaging method based on optical quadrature detection is proposed. The photo-induced acoustic signal is detected by an optical method without contacting the specimen. By utilizing the intrinsic phase difference of a multiport optical interferometer, the quadrature signal of a conventional interferometric signal could be obtained. With this quadratic signal pair, we could reconstruct the photoacoustic signal without suffering from the initial phase drift that usually occurs in a conventional interferometric system. The performance of the proposed system is verified by imaging human hairs embedded in a polydimethylsiloxane resin block. The system's lateral and axial resolutions are measured to be 84 and 86 µm at a 1.5 mm depth of a PDMS resin block, respectively. The experimental result is good enough to distinguish the hairs staggered in depth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA