Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Biol Evol ; 41(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38782570

RESUMEN

Within 15,000 years, the explosive adaptive radiation of haplochromine cichlids in Lake Victoria, East Africa, generated 500 endemic species. In the 1980s, the upsurge of Nile perch, a carnivorous fish artificially introduced to the lake, drove the extinction of more than 200 endemic cichlids. The Nile perch predation particularly harmed piscivorous cichlids, including paedophages, cichlids eat eggs and fries, which is an example of the unique trophic adaptation seen in African cichlids. Here, aiming to investigate past demographic events possibly triggered by the invasion of Nile perch and the subsequent impacts on the genetic structure of cichlids, we conducted large-scale comparative genomics. We discovered evidence of recent bottleneck events in 4 species, including 2 paedophages, which began during the 1970s to 1980s, and population size rebounded during the 1990s to 2000s. The timing of the bottleneck corresponded to the historical records of endemic haplochromines" disappearance and later resurgence, which is likely associated with the introduction of Nile perch by commercial demand to Lake Victoria in the 1950s. Interestingly, among the 4 species that likely experienced bottleneck, Haplochromis sp. "matumbi hunter," a paedophagous cichlid, showed the most severe bottleneck signatures. The components of shared ancestry inferred by ADMIXTURE suggested a high genetic differentiation between matumbi hunter and other species. In contrast, our phylogenetic analyses highly supported the monophyly of the 5 paedophages, consistent with the results of previous studies. We conclude that high genetic differentiation of matumbi hunter occurred due to the loss of shared genetic components among haplochromines in Lake Victoria caused by the recent severe bottleneck.


Asunto(s)
Cíclidos , Lagos , Animales , Cíclidos/genética , Genoma , Genómica , Filogenia
2.
Microb Ecol ; 87(1): 28, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38182675

RESUMEN

High mountain freshwater systems are particularly sensitive to the impacts of global warming and relevant environmental changes. Microorganisms contribute substantially to biogeochemical processes, yet their distribution patterns and driving mechanism in alpine streams remain understudied. Here, we examined the bacterial and fungal community compositions in stream biofilm along the elevational gradient of 745-1874 m on Mt. Kilimanjaro and explored their alpha and beta diversity patterns and the underlying environmental drivers. We found that the species richness and evenness monotonically increased towards higher elevations for bacteria, while were non-significant for fungi. However, both bacterial and fungal communities showed consistent elevational distance-decay relationships, i.e., the dissimilarity of assemblage composition increased with greater elevational differences. Bacterial alpha diversity patterns were mainly affected by chemical variables such as total nitrogen and phosphorus, while fungi were affected by physical variables such as riparian shading and stream width. Notably, climatic variables such as mean annual temperature strongly affected the elevational succession of bacterial and fungal community compositions. Our study is the first exploration of microbial biodiversity and their underlying driving mechanisms for stream ecosystems in tropical alpine regions. Our findings provide insights on the response patterns of tropical aquatic microbial community composition and diversity under climate change.


Asunto(s)
Microbiota , Ríos , Tanzanía , Bacterias/genética , Biopelículas
3.
Environ Res ; 263(Pt 1): 120027, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39307226

RESUMEN

Contemporary environmental factors such as temperature and pH are generally identified as primary influences on microbial diversity, while the role of geological processes remain understudied. Here, we investigated the diversity and community composition of bacteria and fungi along an elevational gradient from703 to 4514 m on Mt. Kilimanjaro, East Africa. We further examined the effects of contemporary environment and geological processes such as weathering on microbial communities and diversities. For community composition, bacteria and fungi showed clear differentiation along elevations and their community dissimilarities increased with elevational distance indicating elevational distance-decay relationships. Multiple variables such as weathering, climate and chemical factors were significantly associated with microbial communities and showed greater effects on bacterial than fungal communities. Specifically, soil pH mainly shaped bacterial communities, while mean annual temperature for fungi, followed by other variables such as weathering processes. For Shannon diversity, bacteria and fungi showed significant hump-shaped elevational patterns with the peak values at 1857 and 1436 m, respectively. Shannon diversity was mainly affected by soil weathering accounting for 8.9% of the total variance for bacteria, while jointly by weathering and climate accounted for 14.3% of fungi. For the community uniqueness, represented by local contribution to beta diversity (LCBD), there were U-shaped patterns for both taxonomic groups. LCBD was mainly explained by the joint effects of chemical and climate variables which accounted for 51.1% and 33.4% for bacteria and fungi, respectively. Our results highlight the effects of soil weathering processes on diversity and community composition for bacteria and fungi. Thus, the integration of weathering with contemporary environments could provide new insights into microbial elevational diversity patterns.

4.
Environ Res ; 250: 118517, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38401680

RESUMEN

Ecological interactions are important for maintaining biodiversity and ecosystem functions. Particularly in stream biofilms, little is known about the distributional patterns of different taxonomic groups and their potential interactions along elevational gradients. Here, we investigated the bacterial and fungal community structures of stream biofilms across elevational gradients on Mount Kilimanjaro, and explored patterns of their distribution, diversity, community structures, and taxa co-occurrence. We found that fungal and bacterial richness were more convergent at higher elevations, while their community structures became significantly more divergent. Inferred network complexity and stability significantly decreased with increasing elevation for fungi, while an opposite trend was observed for bacteria. Further quantitative analyses showed that network structures of bacteria and fungi were more divergent as elevation increased. This pattern was strongly associated with shifts in abiotic factors, such as mean annual temperatures, water PO43--P, and stream width. By constructing bipartite networks, we showed the fungal-bacterial network to be less redundant, more clustering, and unstable with increasing elevation. Abiotic factors (e.g., temperatures and stream width) and microbial community properties (i.e., structure and composition) significantly explained the dynamic changes in fungal-bacterial network properties. Taken together, this study provides evidence for the interplay of biotic and abiotic factors structuring potential microbial interactions in stream biofilms along a mountainside elevational gradient.


Asunto(s)
Altitud , Bacterias , Hongos , Hongos/clasificación , Hongos/aislamiento & purificación , Bacterias/clasificación , Bacterias/aislamiento & purificación , Biopelículas/crecimiento & desarrollo , Biodiversidad , Clima Tropical , Ríos/microbiología , Microbiota
5.
Environ Manage ; 72(3): 473-487, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37154906

RESUMEN

The long-term sustainability of the African Great Lakes is strongly connected to the management and monitoring of their coastal areas. Yet, the communities that live in these areas are rarely involved in monitoring and have limited influence on key management issues. Furthermore, regulatory activities and knowledge sharing in these transnational ecosystems are strongly limited by funding and infrastructure limitations. Citizen science has great potential to advance both scientific and public understanding of the state of the environment. However, there remains a limited understanding of participants' motivations and expectations, especially in developing countries, where citizen science has great potential to complement regulatory monitoring. The present study explores the motivations of citizen scientists in villages along Lake Tanganyika's northern coast and their potential to take a more active role in lake management. Motivations were examined through qualitative interviews, focus groups, and quantitative surveys with 110 citizen scientists and 110 non-citizen scientists from participating villages. Key motivational factors identified were the desire to contribute to scientific research and local knowledge, as well as aspects of financial compensation. The results confirm that participation in citizen science provides many benefits to participants beyond their role as data aggregators and final knowledge users. However, the incentives to participation varied to those typically considered in citizen science programs conducted in developed countries. To create sustainable long-term community based environmental monitoring, these motivations should be incorporated in the program design and participant recruitment.


Asunto(s)
Lagos , Motivación , Humanos , Ecosistema , Encuestas y Cuestionarios , Monitoreo del Ambiente
6.
Ecol Lett ; 25(2): 255-263, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34854211

RESUMEN

Global freshwater biodiversity is declining dramatically, and meeting the challenges of this crisis requires bold goals and the mobilisation of substantial resources. While the reasons are varied, investments in both research and conservation of freshwater biodiversity lag far behind those in the terrestrial and marine realms. Inspired by a global consultation, we identify 15 pressing priority needs, grouped into five research areas, in an effort to support informed stewardship of freshwater biodiversity. The proposed agenda aims to advance freshwater biodiversity research globally as a critical step in improving coordinated actions towards its sustainable management and conservation.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Biodiversidad , Agua Dulce
7.
J Hered ; 113(2): 145-159, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35575081

RESUMEN

Understanding genetic connectivity plays a crucial role in species conservation decisions, and genetic connectivity is an important component of modern fisheries management. In this study, we investigated the population genetics of four endemic Lates species of Lake Tanganyika (Lates stappersii, L. microlepis, L. mariae, and L. angustifrons) using reduced-representation genomic sequencing methods. We find the four species to be strongly differentiated from one another (mean interspecific FST = 0.665), with no evidence for contemporary admixture. We also find evidence for strong genetic structure within L. mariae, with the majority of individuals from the most southern sampling site forming a genetic group that is distinct from the individuals at other sampling sites. We find evidence for much weaker structure within the other three species (L. stappersii, L. microlepis, and L. angustifrons). Our ability to detect this weak structure despite small and unbalanced sample sizes and imprecise geographic sampling locations suggests the possibility for further structure undetected in our study. We call for further research into the origins of the genetic differentiation in these four species-particularly that of L. mariae-which may be important for conservation and management of this culturally and economically important clade of fishes.


Asunto(s)
Genética de Población , Perciformes , Animales , Lagos , Perciformes/clasificación , Perciformes/genética , Tanzanía
8.
Environ Monit Assess ; 194(10): 689, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35984535

RESUMEN

Several studies in Lake Tanganyika have effectively employed traditional methods to explore changes in water quality in open waters; however, coastal monitoring has been restricted and sporadic, relying on costly sample and analytical methods that require skilled technical staff. This study aims in validating citizen science water quality collected data (nitrate, phosphate and turbidity) with those collected and measured by professional scientists in the laboratory. A second objective of the study is to use citizen scientist data to identify the patterns of seasonal and spatial variations in nutrient conditions and forecast potential changes based on expected changes in population and climate (to 2050). The results showed that the concentrations of nitrate and phosphate measured by citizen scientists nearly matched those established by professional scientists, with overall accuracy of 91% and 74%, respectively. For total suspended solids measured by professional and turbidity measured by citizen scientists, results show that, using 14 NTU as a cut-off, citizen scientist measurements of Secchi tube depth to identify lake TSS below 7.0 mg/L showed an accuracy of 88%. In both laboratory and citizen scientist-based studies, all measured water quality variables were significantly higher during the wet season compared to the dry season. Climate factors were discovered to have a major impact on the likelihood of exceeding water quality restrictions in the next decades (2050), which could deteriorate lake conditions. Upscaling citizen science to more communities on the lake and other African Great Lakes would raise environmental awareness, inform management and mitigation activities, and aid long-term decision-making.


Asunto(s)
Lagos , Nitratos , Monitoreo del Ambiente/métodos , Humanos , Nutrientes , Fosfatos , Tanzanía , Calidad del Agua
9.
Environ Monit Assess ; 194(10): 756, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36083391

RESUMEN

The distribution of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn and their fraction characteristics (except Hg) were investigated in surface sediments of the Mwanza Gulf, Lake Victoria. The ecological risks, bioavailability, and mobility of the metals were also evaluated by using enrichment factor (EF), contamination factor (Cf), geo-accumulation index (Igeo), potential ecological risk index (RI), risk assessment code (RAC), individual contamination factor (ICF), and global contamination factor (GCF). Results showed that there were moderate accumulations of heavy metals in sediments from the southern part of the gulf. The mean Cf of heavy metals ranged from 1.19 (Ni) to 2.85 (Hg) suggesting moderate contamination of heavy metals in the sediments while Igeo results showed that the sediments are mainly contaminated by As, Cr, and Hg. The average potential ecological risk of heavy metals in sediments of the Mwanza Gulf is at moderate level (RI 205.49). Hg and Cd posed considerable or moderated risks with mean ecological risk of 114.18 and 44.16, which accounted for 51.08% and 21.54% of the total RI, respectively. High bioavailability and mobility of heavy metals were found in sediments near Mwanza city, particularly Zn and Cd, of which the bioavailability risks were at medium to high levels. Given the biological and environmental importance of the Mwanza Gulf and Lake Victoria, emission paths and bioaccumulation of heavy metals through food webs should be studied carefully to ensure the safety of food and the health and well-being of humans.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes Químicos del Agua , Cadmio , China , Monitoreo del Ambiente/métodos , Sedimentos Geológicos , Humanos , Lagos , Metales Pesados/análisis , Medición de Riesgo , Tanzanía , Contaminantes Químicos del Agua/análisis
10.
Mol Ecol ; 29(17): 3277-3298, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32687665

RESUMEN

Identifying patterns in genetic structure and the genetic basis of ecological adaptation is a core goal of evolutionary biology and can inform the management and conservation of species that are vulnerable to population declines exacerbated by climate change. We used reduced-representation genomic sequencing methods to gain a better understanding of genetic structure among and within populations of Lake Tanganyika's two sardine species, Limnothrissa miodon and Stolothrissa tanganicae. Samples of these ecologically and economically important species were collected across the length of Lake Tanganyika, as well as from nearby Lake Kivu, where L. miodon was introduced in 1959. Our results reveal differentiation within both S. tanganicae and L. miodon that is not explained by geography. Instead, this genetic differentiation is due to the presence of large sex-specific regions in the genomes of both species, but involving different polymorphic sites in each species. Our results therefore indicate rapidly evolving XY sex determination in the two species. Additionally, we found evidence of a large chromosomal rearrangement in L. miodon, creating two homokaryotypes and one heterokaryotype. We found all karyotypes throughout Lake Tanganyika, but the frequencies vary along a north-south gradient and differ substantially in the introduced Lake Kivu population. We do not find evidence for significant isolation by distance, even over the hundreds of kilometres covered by our sampling, but we do find shallow population structure.


Asunto(s)
Peces , Lagos , Animales , Flujo Genético , Variación Genética , Genómica , Tanzanía
11.
Water Res ; 266: 122393, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39243463

RESUMEN

Microbial amino acid composition (AA) reflects adaptive strategies of cellular and molecular regulations such as a high proportion of acidic AAs, including glutamic and aspartic acids in alkaliphiles. It remains understudied how microbial AA content is linked to their pH adaptation especially in natural environments. Here we examined prokaryotic communities and their AA composition of genes with metagenomics for 39 water and sediments of East African lakes along a gradient of pH spanning from 7.2 to 10.1. We found that Shannon diversity declined with the increasing pH and that species abundance were either positively or negatively associated with pH, indicating their distinct habitat preference in lakes. Microbial communities showed higher acidic proteomes in alkaline than neutral lakes. Species acidic proteomes were also positively correlated with their pH preference, which was consistent across major bacterial lineages. These results suggest selective pressure associated with high pH likely shape microbial amino acid composition both at the species and community levels. Comparative genome analyses further revealed that alkaliphilic microbes contained more functional genes with higher acidic AAs when compared to those in neutral conditions. These traits included genes encoding diverse classes of cation transmembrane transporters, antiporters, and compatible solute transporters, which are involved in cytoplasmic pH homeostasis and osmotic stress defense under high pH conditions. Our results provide the field evidence for the strong relationship between prokaryotic AA composition and their habitat preference and highlight amino acid optimization as strategies for environmental adaptation.

12.
Sci Total Environ ; 950: 175197, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39094654

RESUMEN

East African lakes, especially soda lakes, are home habitats for massive numbers of wildlife such as flamingos, mammals, and fishes. These lakes are known for their high primary production due to local high temperatures, light intensities, and alkalinity (inorganic carbon). However, these lakes, normally within remote areas, receive low nutrient inputs. Ammonium (NH4+) recycling and/or nitrogen fixation can become the major N supply mechanisms for phytoplankton. However, the driving forces on microbial N nutrition in lakes with minimal anthropogenic disturbance remain poorly understood. Using stable isotope tracer techniques, NH4+ recycling rates were measured in 18 lakes and reservoirs in East Africa (Tanzania and Kenya) during the dry season in early 2020. Three functional genes (nifH, gdh, and ureC) relating to microbial N nutrition were also measured. The regeneration of NH4+ supported up to 71 % of the NH4+ uptake. Positive community biological NH4+ demands (CBAD) for all lakes and reservoirs indicate an obvious N demand from microbial community. Our study provides clear evidence that microbial NH4+ uptake rates linked closely to the dissolved organic matter (DOM) properties (e.g., the absorption coefficient at 254 nm, percents of total fluorescence intensity contributed by microbial humic-like and protein-like components) and that water residence time drives microbial NH4+ recycling by regulating the duration of in-lake DOM processing and influencing algal growth. Phytoplankton, especially those of Cyanophyceae, showed maximum biomass and higher NH4+ recycling rates at a certain range of water residence time (e.g., 5-8 years). However, CBAD showed a decreasing trend with longer water residence time, which may be influenced by changes in the algal community composition (e.g., % Cyanophyceae vs. % Bacillariophyceae). These results indicate that DOM dynamics and the water residence time have the potential to facilitate the understanding of microbial nitrogen supply status in East African lakes.


Asunto(s)
Monitoreo del Ambiente , Lagos , Nitrógeno , Fitoplancton , Compuestos de Amonio/análisis , Kenia , Lagos/química , Lagos/microbiología , Nitrógeno/análisis , Tanzanía , Contaminantes Químicos del Agua/análisis
13.
Environ Sci Pollut Res Int ; 31(5): 8134-8149, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177643

RESUMEN

As the second deepest lake in Africa, Lake Tanganyika plays an important role in supplying fish protein for the catchment's residents and is irreplaceable in global biodiversity. However, the lake's water environment is threatened by socioeconomic development and rapid population growth along the lake. This study analyzed the spatial scale effects and seasonal dependence of land use types and landscape metrics on water quality in 16 sub-basins along northeastern Lake Tanganyika at different levels of urbanization. The results revealed that land use types had a higher influence on water quality in urban areas than that in rural areas; the explanatory variance in the urban area was 0.78-0.96, while it was 0.21-0.70 in the rural area. The explanatory ability of land use types on water quality was better at the buffer scale than at the sub-watershed scale, and the 500 m buffer scale had the highest explanatory ability in the urban area and rural area both in the rainy season and dry season, and artificial surface and arable land were the main contributing factors. And this phenomenon was more obvious in dry season than in rainy season. We identified that CONTAG was the key landscape metric in urban area and was positively correlated with nutrient variables, indicating that water quality degraded in less fragmented landscapes. The sub-watershed scale had the highest explained ability, while in rural area, the 1500 m buffer scale had the highest explained ability and IJI had the highest explanatory variance, which had a negative effect on water quality. Research on the relationship between land use and water quality would help assess the water quality in the unmonitored watershed as monitoring is expensive and time-consuming in low-income area. This knowledge would provide guideline to watershed managers and policymakers to prioritize the future land use development within Lake Tanganyika basin.


Asunto(s)
Lagos , Calidad del Agua , Monitoreo del Ambiente , Tanzanía , Urbanización , China , Ríos
14.
Environ Sci Pollut Res Int ; 30(18): 52410-52420, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36840882

RESUMEN

Urban nitrogen discharge has become an important factor leading to urban water environment deterioration, water crisis, and frequent air pollution. Human consumption is the driving force of nitrogen flow and the core of urban nitrogen research. Based on the process of nitrogen flow in the urban human system, combined with the relevant United Nations Sustainable Development Goals (SDGs) and taking Dar es Salaam as an example, we established a generic analytical framework for sustainable nitrogen management and put forward the strategies of sustainable nitrogen management in the urban human system. The main conclusions are as follows. (1) Waste nitrogen discharge affected the environment quality. 5286 t of N (5095 t of N-NH3, 86 t of N-N2O, and 105 t of N-NOx) was emitted into the atmosphere that affected air quality. 9304 t of N was discharged into surface water and 203 t of N was leaked, which had a negative impact on the prevention and control of surface water pollution. And 8334 t of N pose a potential threat to environmental quality. (2) Nitrogen management in Dar es Salaam faced huge challenges. From the perspective of nitrogen flow of the urban human system, the diet structure and household energy structure need to be optimized, and food waste is serious. Sewage treatment and garbage treatment are seriously insufficient, and the corresponding technologies are backward. In order to solve the existing problems of nitrogen flow in the urban human system and include sustainable nitrogen management under future challenges of growing population and economy, we proposed strategies including healthy diet guidance, reducing food waste, detailed assessment of household nitrogen accumulation, transformation of household energy structure to low nitrogen emission energy, increasing nitrogen recycling ratio, and infrastructure improvement of sewage treatment and garbage treatment, hence contributing to the achievement of related SDGs.


Asunto(s)
Nitrógeno , Eliminación de Residuos , Humanos , Alimentos , Aguas del Alcantarillado , Tanzanía/epidemiología
15.
Nat Commun ; 14(1): 6591, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37852975

RESUMEN

The factors that govern the geographical distribution of nitrogen fixation are fundamental to providing accurate nitrogen budgets in aquatic environments. Model-based insights have demonstrated that regional hydrodynamics strongly impact nitrogen fixation. However, the mechanisms establishing this physical-biological coupling have yet to be constrained in field surveys. Here, we examine the distribution of nitrogen fixation in Lake Tanganyika - a model system with well-defined hydrodynamic regimes. We report that nitrogen fixation is five times higher under stratified than under upwelling conditions. Under stratified conditions, the limited resupply of inorganic nitrogen to surface waters, combined with greater light penetration, promotes the activity of bloom-forming photoautotrophic diazotrophs. In contrast, upwelling conditions support predominantly heterotrophic diazotrophs, which are uniquely suited to chemotactic foraging in a more dynamic nutrient landscape. We suggest that these hydrodynamic regimes (stratification versus mixing) play an important role in governing both the rates and the mode of nitrogen fixation.


Asunto(s)
Lagos , Fijación del Nitrógeno , Hidrodinámica , Tanzanía , Nitrógeno
16.
PLoS One ; 18(11): e0281828, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37939036

RESUMEN

Lake Tanganyika's pelagic fish sustain the second largest inland fishery in Africa and are under pressure from heavy fishing and global warming related increases in stratification. The strength of water column stratification varies regionally, with a more stratified north and an upwelling-driven, biologically more productive south. Only little is known about whether such regional hydrodynamic regimes induce ecological or genetic differences among populations of highly mobile, pelagic fish inhabiting these different areas. Here, we examine whether the regional contrasts leave distinct isotopic imprints in the pelagic fish of Lake Tanganyika, which may reveal differences in diet or lipid content. We conducted two lake-wide campaigns during different seasons and collected physical, nutrient, chlorophyll, phytoplankton and zooplankton data. Additionally, we analyzed the pelagic fish-the clupeids Stolothrissa tanganicae, Limnothrissa miodon and four Lates species-for their isotopic and elemental carbon (C) and nitrogen (N) compositions. The δ13C values were significantly higher in the productive south after the upwelling/mixing period across all trophic levels, implying that the fish have regional foraging grounds, and thus record these latitudinal isotope gradients. By combining our isotope data with previous genetic results showing little geographic structure, we demonstrate that the fish reside in a region for a season or longer. Between specimens from the north and south we found no strong evidence for varying trophic levels or lipid contents, based on their bulk δ15N and C:N ratios. We suggest that the development of regional trophic or physiological differences may be inhibited by the lake-wide gene flow on the long term. Overall, our findings show that the pelagic fish species, despite not showing evidence for genetic structure at the basin scale, form regional stocks at the seasonal timescales. This implies that sustainable management strategies may consider adopting regional fishing quotas.


Asunto(s)
Carbono , Lagos , Animales , Tanzanía , Isótopos , Lípidos , Cadena Alimentaria , Peces
17.
Environ Sci Pollut Res Int ; 29(27): 40812-40825, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35083687

RESUMEN

Anthropogenic pollution plays an important part in deteriorating the water quality of rivers all over the world, especially in urban areas of Africa where water quality monitoring is still seriously constrained by the limited test facility and capability. In this study, for evaluating the impact of urbanization on the river water quality, we investigated four typical urban rivers of Tanzania through the upper-urban-down gradient assessment approach and analyzed by water quality index (WQI) and statistical methods. The physicochemical indices monitored in these rivers revealed that the contents of those indicators of TN, TP, PO43-, NH4+, CODMn, and NO3- were accumulated significantly in the lower reaches of the cities, which indicated the life-type pollution characteristics in such urban rivers of Africa. The following main conclusions are achieved from this study. The water quality of 30% of the investigated river sections is in the medium to good status based on the subjective WQI with sensory factors included. Moreover, the sections with obvious water quality decline are mainly limited to the river segments within the urban central area, and severe pollution of water bodies is closely related to large cities, indicating an increasing pollution tendency with the quickly growing population. Therefore, to help formulate water pollution control policies in response to the rapid urban expansion in African countries, it is necessary to adopt an economical and feasible method to carry out early monitoring of surface water quality timely.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente/métodos , Ríos/química , Tanzanía , Urbanización , Contaminantes Químicos del Agua/análisis , Contaminación del Agua/análisis , Calidad del Agua
18.
Sci Total Environ ; 841: 156607, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35690192

RESUMEN

East African lakes include the most productive and alkaline lake group in the world. Yet, they generally receive fewer nutrient inputs than the densely populated subtropical and temperate lakes in the northern hemisphere. In these lakes with insufficient supplies of inorganic nitrogen, the mineralization of benthic organic matter can play an important role in driving the nutrient cycle and nitrogen loss. Using a suite of stable 15N isotope dilution and tracer techniques, we examined five main processes of the sediment nitrogen cycle in 16 lakes and reservoirs of Tanzania and Kenya, East Africa: gross nitrogen mineralization, ammonium immobilization, dissimilatory nitrate reduction to ammonium (DNRA), and the dinitrogen (N2) production via denitrification and anaerobic ammonium oxidation (anammox). Gross nitrogen mineralization and ammonium immobilization showed the maximum values of 9.84 and 12.39 µmol N kg-1 h-1, respectively. Potential DNRA rates ranged from 0.22 to 8.15 µmol N kg-1 h-1 and accounted for 10 %-74 % (average 25 %) of the total dissimilatory nitrate reduction. Potential nitrate reduction rates in most lakes were dominated by denitrification with a contribution of 26 %-85 % and a mean of 65 %. We further found that the sediment nitrogen transformations were driven mainly by benthic organic matter properties and water column phosphate concentrations, reflecting microbial metabolic responses to the changing carbon and nutrients availability. For instance, autochthonous production of protein-like organic matter attributed to active sediment nitrogen mineralization, DNRA, and denitrification. In contrast, the high degree of humification caused by the inputs of terrestrial humic-like substances slowed down the sediment nitrogen transformations. The contribution of DNRA to total dissimilatory nitrate reduction was significantly positively correlated to sediment C: N ratios. These results indicate that predictions of sediment N supply and loss in East African lakes can be improved by incorporating sediment organic matter properties.


Asunto(s)
Compuestos de Amonio , Nitrógeno , Compuestos de Amonio/metabolismo , Desnitrificación , Lagos , Nitratos/análisis , Nitrógeno/análisis , Óxidos de Nitrógeno/análisis , Compuestos Orgánicos , Oxidación-Reducción , Tanzanía
19.
PLoS One ; 17(1): e0262881, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35089939

RESUMEN

Conventional water quality monitoring has been done for decades in Lake Tanganyika, under different national and international programs. However, these projects utilized monitoring approaches, which were temporally limited, labour intensive and costly. This study examines the use of citizen science to monitor the dynamics of coliform concentrations in Lake Tanganyika as a complementary method to statutory and project-focused measurements. Persons in five coastal communities (Kibirizi, Ilagala, Karago, Ujiji and Gombe) were trained and monitored total coliforms, faecal coliforms and turbidity for one year on a monthly basis, in parallel with professional scientists. A standardized and calibrated Secchi tube was used at the same time to determine turbidity. Results indicate that total and faecal coliform concentrations determined by citizen scientists correlated well to those determined by professional scientists. Furthermore, citizen scientist-based turbidity values were shown to provide a potential indicator for high FC and TC concentrations. As a simple tiered approach to identify increased coliform loads, trained local citizen scientists could use low-cost turbidity measurements with follow up sampling and analysis for coliforms, to inform their communities and regulatory bodies of high risk conditions, as well as to validate local mitigation actions. By comparing the spatial and temporal dynamics of coliform concentrations to local conditions of infrastructure, population, precipitation and hydrology in the 15 sites (3 sites per community) over 12 months, potential drivers of coliform pollution in these communities were identified, largely related to precipitation dynamics and the land use.


Asunto(s)
Monitoreo del Ambiente , Microbiología del Agua , Contaminación del Agua , Calidad del Agua , Lagos , Tanzanía
20.
Environ Sci Pollut Res Int ; 29(23): 34105-34118, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35034298

RESUMEN

Tanzania is the only country bordering all three transboundary East African Great Lakes, i.e., Lake Victoria, Lake Tanganyika, and Lake Nyasa (Lake Malawi). This study investigated the spatiotemporal variability of basic physicochemical parameters of nearshore surface waters in Mwanza Gulf (Lake Victoria), Kigoma Bay (Lake Tanganyika), and Wissmann Bay (Lake Nyasa). Water quality was evaluated using the water quality index (WQI) method. Results showed that N and P nutrient pollution was relatively severe in central and southern parts of Mwanza Gulf owing to external agricultural emissions and internal release associated with physically disturbed sediment resuspension. External inputs from inflowing surface runoffs from the city of Mwanza typically enhanced N loading in northern parts of the gulf during the rainy season. Poor water quality was found in central and southern parts of Mwanza Gulf, especially in the rainy season. Algal blooms and NH4+-N (total P and total N) were the main factors driving water quality degradation in the rainy (dry) season. Kigoma Bay and Wissmann Bay both had good water quality, except in river mouth areas in Lake Nyasa during the rainy season. The degradation in water quality was caused primarily by increased land-based nutrient and turbidity inputs. To respond to challenges associated with climate change and local socioeconomic development, long-term monitoring of the lacustrine environment and systematic limnological studies will be required, not only in the three bays but also more widely throughout the three lakes and their basins.


Asunto(s)
Lagos , Calidad del Agua , China , Monitoreo del Ambiente , Eutrofización , Nitrógeno/análisis , Fósforo/análisis , Tanzanía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA