Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 175(3): 809-821.e19, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30270044

RESUMEN

Approximately 10% of human protein kinases are believed to be inactive and named pseudokinases because they lack residues required for catalysis. Here, we show that the highly conserved pseudokinase selenoprotein-O (SelO) transfers AMP from ATP to Ser, Thr, and Tyr residues on protein substrates (AMPylation), uncovering a previously unrecognized activity for a member of the protein kinase superfamily. The crystal structure of a SelO homolog reveals a protein kinase-like fold with ATP flipped in the active site, thus providing a structural basis for catalysis. SelO pseudokinases localize to the mitochondria and AMPylate proteins involved in redox homeostasis. Consequently, SelO activity is necessary for the proper cellular response to oxidative stress. Our results suggest that AMPylation may be a more widespread post-translational modification than previously appreciated and that pseudokinases should be analyzed for alternative transferase activities.


Asunto(s)
Adenosina Monofosfato/metabolismo , Dominio Catalítico , Procesamiento Proteico-Postraduccional , Selenoproteínas/metabolismo , Secuencia Conservada , Humanos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Estrés Oxidativo , Selenoproteínas/química
2.
Cell ; 161(7): 1619-32, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26091039

RESUMEN

The existence of extracellular phosphoproteins has been acknowledged for over a century. However, research in this area has been undeveloped largely because the kinases that phosphorylate secreted proteins have escaped identification. Fam20C is a kinase that phosphorylates S-x-E/pS motifs on proteins in milk and in the extracellular matrix of bones and teeth. Here, we show that Fam20C generates the majority of the extracellular phosphoproteome. Using CRISPR/Cas9 genome editing, mass spectrometry, and biochemistry, we identify more than 100 secreted phosphoproteins as genuine Fam20C substrates. Further, we show that Fam20C exhibits broader substrate specificity than previously appreciated. Functional annotations of Fam20C substrates suggest roles for the kinase beyond biomineralization, including lipid homeostasis, wound healing, and cell migration and adhesion. Our results establish Fam20C as the major secretory pathway protein kinase and serve as a foundation for new areas of investigation into the role of secreted protein phosphorylation in human biology and disease.


Asunto(s)
Quinasa de la Caseína I/química , Quinasa de la Caseína I/metabolismo , Proteínas de la Matriz Extracelular/química , Proteínas de la Matriz Extracelular/metabolismo , Secuencia de Aminoácidos , Proteínas Sanguíneas/metabolismo , Quinasa de la Caseína I/genética , Adhesión Celular , Movimiento Celular , Proteínas del Líquido Cefalorraquídeo/metabolismo , Proteínas de la Matriz Extracelular/genética , Técnicas de Inactivación de Genes , Ontología de Genes , Humanos , Datos de Secuencia Molecular , Fosfoproteínas/análisis , Vías Secretoras , Especificidad por Sustrato
3.
Cell ; 154(6): 1269-84, 2013 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-24034250

RESUMEN

Cell surface growth factor receptors couple environmental cues to the regulation of cytoplasmic homeostatic processes, including autophagy, and aberrant activation of such receptors is a common feature of human malignancies. Here, we defined the molecular basis by which the epidermal growth factor receptor (EGFR) tyrosine kinase regulates autophagy. Active EGFR binds the autophagy protein Beclin 1, leading to its multisite tyrosine phosphorylation, enhanced binding to inhibitors, and decreased Beclin 1-associated VPS34 kinase activity. EGFR tyrosine kinase inhibitor (TKI) therapy disrupts Beclin 1 tyrosine phosphorylation and binding to its inhibitors and restores autophagy in non-small-cell lung carcinoma (NSCLC) cells with a TKI-sensitive EGFR mutation. In NSCLC tumor xenografts, the expression of a tyrosine phosphomimetic Beclin 1 mutant leads to reduced autophagy, enhanced tumor growth, tumor dedifferentiation, and resistance to TKI therapy. Thus, oncogenic receptor tyrosine kinases directly regulate the core autophagy machinery, which may contribute to tumor progression and chemoresistance.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia , Resistencia a Antineoplásicos , Receptores ErbB/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Beclina-1 , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Receptores ErbB/genética , Xenoinjertos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Trasplante de Neoplasias , Fosforilación
4.
Cell ; 154(5): 1085-1099, 2013 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-23954414

RESUMEN

The molecular mechanism of autophagy and its relationship to other lysosomal degradation pathways remain incompletely understood. Here, we identified a previously uncharacterized mammalian-specific protein, Beclin 2, which, like Beclin 1, functions in autophagy and interacts with class III PI3K complex components and Bcl-2. However, Beclin 2, but not Beclin 1, functions in an additional lysosomal degradation pathway. Beclin 2 is required for ligand-induced endolysosomal degradation of several G protein-coupled receptors (GPCRs) through its interaction with GASP1. Beclin 2 homozygous knockout mice have decreased embryonic viability, and heterozygous knockout mice have defective autophagy, increased levels of brain cannabinoid 1 receptor, elevated food intake, and obesity and insulin resistance. Our findings identify Beclin 2 as a converging regulator of autophagy and GPCR turnover and highlight the functional and mechanistic diversity of Beclin family members in autophagy, endolysosomal trafficking, and metabolism.


Asunto(s)
Autofagia , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Beclina-1 , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Lisosomas/metabolismo , Masculino , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Obesidad/metabolismo , Alineación de Secuencia
5.
Proc Natl Acad Sci U S A ; 121(6): e2312291121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38294943

RESUMEN

A missense variant in patatin-like phospholipase domain-containing protein 3 [PNPLA3(I148M)] is the most impactful genetic risk factor for fatty liver disease (FLD). We previously showed that PNPLA3 is ubiquitylated and subsequently degraded by proteasomes and autophagosomes and that the PNPLA3(148M) variant interferes with this process. To define the machinery responsible for PNPLA3 turnover, we used small interfering (si)RNAs to inactivate components of the ubiquitin proteasome system. Inactivation of bifunctional apoptosis regulator (BFAR), a membrane-bound E3 ubiquitin ligase, reproducibly increased PNPLA3 levels in two lines of cultured hepatocytes. Conversely, overexpression of BFAR decreased levels of endogenous PNPLA3 in HuH7 cells. BFAR and PNPLA3 co-immunoprecipitated when co-expressed in cells. BFAR promoted ubiquitylation of PNPLA3 in vitro in a reconstitution assay using purified, epitope-tagged recombinant proteins. To confirm that BFAR targets PNPLA3, we inactivated Bfar in mice. Levels of PNPLA3 protein were increased twofold in hepatic lipid droplets of Bfar-/- mice with no associated increase in PNPLA3 mRNA levels. Taken together these data are consistent with a model in which BFAR plays a role in the post-translational degradation of PNPLA3. The identification of BFAR provides a potential target to enhance PNPLA3 turnover and prevent FLD.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis , Proteínas de la Membrana , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Aciltransferasas , Hepatocitos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fosfolipasas A2 Calcio-Independiente/genética , Ubiquitina , Ubiquitina-Proteína Ligasas/genética , Proteínas de la Membrana/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Humanos , Línea Celular Tumoral
6.
Proc Natl Acad Sci U S A ; 120(12): e2214069120, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36917664

RESUMEN

Recent advances in protein structure prediction have generated accurate structures of previously uncharacterized human proteins. Identifying domains in these predicted structures and classifying them into an evolutionary hierarchy can reveal biological insights. Here, we describe the detection and classification of domains from the human proteome. Our classification indicates that only 62% of residues are located in globular domains. We further classify these globular domains and observe that the majority (65%) can be classified among known folds by sequence, with a smaller fraction (33%) requiring structural data to refine the domain boundaries and/or to support their homology. A relatively small number (966 domains) cannot be confidently assigned using our automatic pipelines, thus demanding manual inspection. We classify 47,576 domains, of which only 23% have been included in experimental structures. A portion (6.3%) of these classified globular domains lack sequence-based annotation in InterPro. A quarter (23%) have not been structurally modeled by homology, and they contain 2,540 known disease-causing single amino acid variations whose pathogenesis can now be inferred using AF models. A comparison of classified domains from a series of model organisms revealed expansions of several immune response-related domains in humans and a depletion of olfactory receptors. Finally, we use this classification to expand well-known protein families of biological significance. These classifications are presented on the ECOD website (http://prodata.swmed.edu/ecod/index_human.php).


Asunto(s)
Aminoácidos , Proteoma , Humanos , Proteoma/genética , Alineación de Secuencia , Bases de Datos de Proteínas
7.
PLoS Comput Biol ; 20(2): e1011586, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38416793

RESUMEN

Protein structure prediction has now been deployed widely across several different large protein sets. Large-scale domain annotation of these predictions can aid in the development of biological insights. Using our Evolutionary Classification of Protein Domains (ECOD) from experimental structures as a basis for classification, we describe the detection and cataloging of domains from 48 whole proteomes deposited in the AlphaFold Database. On average, we can provide positive classification (either of domains or other identifiable non-domain regions) for 90% of residues in all proteomes. We classified 746,349 domains from 536,808 proteins comprised of over 226,424,000 amino acid residues. We examine the varying populations of homologous groups in both eukaryotes and bacteria. In addition to containing a higher fraction of disordered regions and unassigned domains, eukaryotes show a higher proportion of repeated proteins, both globular and small repeats. We enumerate those highly populated domains that are shared in both eukaryotes and bacteria, such as the Rossmann domains, TIM barrels, and P-loop domains. Additionally, we compare the sampling of homologous groups from this whole proteome set against our stable ECOD reference and discuss groups that have been enriched by structure predictions. Finally, we discuss the implication of these results for protein target selection for future classification strategies for very large protein sets.


Asunto(s)
Evolución Biológica , Proteoma , Dominios Proteicos , Evolución Molecular , Bacterias , Bases de Datos de Proteínas
8.
Proc Natl Acad Sci U S A ; 119(24): e2203176119, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35648808

RESUMEN

Bacterial signal transduction systems sense changes in the environment and transmit these signals to control cellular responses. The simplest one-component signal transduction systems include an input sensor domain and an output response domain encoded in a single protein chain. Alternatively, two-component signal transduction systems transmit signals by phosphorelay between input and output domains from separate proteins. The membrane-tethered periplasmic bile acid sensor that activates the Vibrio parahaemolyticus type III secretion system adopts an obligate heterodimer of two proteins encoded by partially overlapping VtrA and VtrC genes. This co-component signal transduction system binds bile acid using a lipocalin-like domain in VtrC and transmits the signal through the membrane to a cytoplasmic DNA-binding transcription factor in VtrA. Using the domain and operon organization of VtrA/VtrC, we identify a fast-evolving superfamily of co-component systems in enteric bacteria. Accurate machine learning­based fold predictions for the candidate co-components support their homology in the twilight zone of rapidly evolving sequences and provide mechanistic hypotheses about previously unrecognized lipid-sensing functions.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Islas Genómicas , Proteínas de la Membrana , Sistemas de Secreción Tipo III , Vibrio parahaemolyticus , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ácidos y Sales Biliares/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Multimerización de Proteína , Transducción de Señal , Factores de Transcripción/metabolismo , Sistemas de Secreción Tipo III/genética , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/patogenicidad , Virulencia/genética
9.
J Biol Chem ; 299(4): 104591, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36894018

RESUMEN

Bile acids are important for digestion of food and antimicrobial activity. Pathogenic Vibrio parahaemolyticus senses bile acids and induce pathogenesis. The bile acid taurodeoxycholate (TDC) was shown to activate the master regulator, VtrB, of this system, whereas other bile acids such as chenodeoxycholate (CDC) do not. Previously, VtrA-VtrC was discovered to be the co-component signal transduction system that binds bile acids and induces pathogenesis. TDC binds to the periplasmic domain of the VtrA-VtrC complex, activating a DNA-binding domain in VtrA that then activates VtrB. Here, we find that CDC and TDC compete for binding to the VtrA-VtrC periplasmic heterodimer. Our crystal structure of the VtrA-VtrC heterodimer bound to CDC revealed CDC binds in the same hydrophobic pocket as TDC but differently. Using isothermal titration calorimetry, we observed that most mutants in the binding pocket of VtrA-VtrC caused a decrease in bile acid binding affinity. Notably, two mutants in VtrC bound bile acids with a similar affinity as the WT protein but were attenuated for TDC-induced type III secretion system 2 activation. Collectively, these studies provide a molecular explanation for the selective pathogenic signaling by V. parahaemolyticus and reveal insight into a host's susceptibility to disease.


Asunto(s)
Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Ácidos y Sales Biliares/metabolismo , Transducción de Señal , Ácido Quenodesoxicólico , Proteínas Bacterianas/metabolismo
10.
Proteins ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775337

RESUMEN

A propeptide is removed from a precursor protein to generate its active or mature form. Propeptides play essential roles in protein folding, transportation, and activation and are present in about 2.3% of reviewed proteins in the UniProt database. They are often found in secreted or membrane-bound proteins including proteolytic enzymes, hormones, and toxins. We identified a variety of globular and nonglobular Pfam domains in protein sequences designated as propeptides, some of which form intramolecular interactions with other domains in the mature proteins. Propeptide-containing enzymes mostly function as proteases, as they are depleted in other enzyme classes such as hydrolases acting on DNA and RNA, isomerases, and lyases. We applied AlphaFold to generate structural models for over 7000 proteins with propeptides having no less than 20 residues. Analysis of residue contacts in these models revealed conformational changes for over 300 proteins before and after the cleavage of the propeptide. Examples of conformation change occur in several classes of proteolytic enzymes in the families of subtilisins, trypsins, aspartyl proteases, and thermolysin-like metalloproteases. In most of the observed cases, cleavage of the propeptide releases the constraints imposed by the covalent bond between the propeptide and the mature protein, and cleavage enables stronger interactions between the propeptide and the mature protein. These findings suggest that post-cleavage propeptides could play critical roles in regulating the activity of mature proteins.

11.
Mol Cell ; 63(3): 420-32, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27425409

RESUMEN

Recent studies suggest that the microprocessor (Drosha-DGCR8) complex can be recruited to chromatin to catalyze co-transcriptional processing of primary microRNAs (pri-miRNAs) in mammalian cells. However, the molecular mechanism of co-transcriptional miRNA processing is poorly understood. Here we find that HP1BP3, a histone H1-like chromatin protein, specifically associates with the microprocessor and promotes global miRNA biogenesis in human cells. Chromatin immunoprecipitation (ChIP) studies reveal genome-wide co-localization of HP1BP3 and Drosha and HP1BP3-dependent Drosha binding to actively transcribed miRNA loci. Moreover, HP1BP3 specifically binds endogenous pri-miRNAs and facilitates the Drosha/pri-miRNA association in vivo. Knockdown of HP1BP3 compromises pri-miRNA processing by causing premature release of pri-miRNAs from the chromatin. Taken together, these studies suggest that HP1BP3 promotes co-transcriptional miRNA processing via chromatin retention of nascent pri-miRNA transcripts. This work significantly expands the functional repertoire of the H1 family of proteins and suggests the existence of chromatin retention factors for widespread co-transcriptional miRNA processing.


Asunto(s)
Cromatina/metabolismo , MicroARNs/biosíntesis , Proteínas Nucleares/metabolismo , Procesamiento Postranscripcional del ARN , Transcripción Genética , Animales , Sitios de Unión , Cromatina/genética , Inmunoprecipitación de Cromatina , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , Proteínas de Unión al ADN , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genoma Humano , Células HeLa , Humanos , MicroARNs/genética , Proteínas Nucleares/genética , Unión Proteica , Interferencia de ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Transfección
12.
Mol Biol Evol ; 38(5): 2166-2176, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33502509

RESUMEN

Centuries of zoological studies have amassed billions of specimens in collections worldwide. Genomics of these specimens promises to reinvigorate biodiversity research. However, because DNA degrades with age in historical specimens, it is a challenge to obtain genomic data for them and analyze degraded genomes. We developed experimental and computational protocols to overcome these challenges and applied our methods to resolve a series of long-standing controversies involving a group of butterflies. We deduced the geographical origins of several historical specimens of uncertain provenance that are at the heart of these debates. Here, genomics tackles one of the greatest problems in zoology: countless old specimens that serve as irreplaceable embodiments of species concepts cannot be confidently assigned to extant species or population due to the lack of diagnostic morphological features and clear documentation of the collection locality. The ability to determine where they were collected will resolve many on-going disputes. More broadly, we show the utility of applying genomics to historical museum specimens to delineate the boundaries of species and populations, and to hypothesize about genotypic determinants of phenotypic traits.


Asunto(s)
Mariposas Diurnas/genética , ADN Antiguo/análisis , Genómica/métodos , Adaptación Biológica/genética , Altitud , Animales , Pigmentación/genética
13.
Mod Pathol ; 35(3): 333-343, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34538873

RESUMEN

Low-grade oncocytic tumor (LOT) of the kidney is a recently described entity with poorly understood pathogenesis. Using next-generation sequencing (NGS) and complementary approaches, we provide insight into its biology. We describe 22 LOT corresponding to 7 patients presenting with a median age of 75 years (range 63-86 years) and male to female ratio 2:5. All 22 tumors demonstrated prototypical microscopic features. Tumors were well-circumscribed and solid. They were composed of sheets of tumor cells in compact nests. Tumor cells had eosinophilic cytoplasm, round to oval nuclei (without nuclear membrane irregularities), focal subtle perinuclear halos, and occasional binucleation. Sharply delineated edematous stromal islands were often observed. Tumor cells were positive for PAX8, negative for CD117, and exhibited diffuse and strong cytokeratin-7 expression. Six patients presented with pT1 tumors. At a median follow-up of 29 months, four patients were alive without recurrence (three patients had died from unrelated causes). All tumors were originally classified as chromophobe renal cell carcinoma, eosinophilic variant (chRCC-eo). While none of the patients presented with known syndromic features, one patient with multiple bilateral LOTs was subsequently found to have a likely pathogenic germline TSC1 mutation. Somatic, likely activating, mutations in MTOR and RHEB were identified in all other evaluable LOTs. As assessed by phospho-S6 and phospho-4E-BP1, mTOR complex 1 (mTORC1) was activated across all cases but to different extent. MTOR mutant LOT exhibited lower levels of mTORC1 activation, possibly related to mTORC1 dimerization and the preservation of a wild-type MTOR copy (retained chromosome 1). Supporting its distinction from related entities, gene expression analyses showed that LOT clustered separately from classic chRCC, chRCC-eo, and RO. In summary, converging mTORC1 pathway mutations, mTORC1 complex activation, and a distinctive gene expression signature along with characteristic phenotypic features support LOT designation as a distinct entity with both syndromic and non-syndromic cases associated with an indolent course.


Asunto(s)
Adenoma Oxifílico , Carcinoma de Células Renales , Neoplasias Renales , Adenoma Oxifílico/genética , Adenoma Oxifílico/patología , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Femenino , Células Germinativas/química , Células Germinativas/patología , Humanos , Riñón/patología , Neoplasias Renales/genética , Neoplasias Renales/patología , Masculino , Persona de Mediana Edad , Mutación , Serina-Treonina Quinasas TOR/genética
14.
Nat Chem Biol ; 16(3): 337-344, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31932719

RESUMEN

Infection by the fungal pathogen Cryptococcus neoformans causes lethal meningitis, primarily in immune-compromised individuals. Colonization of the brain by C. neoformans is dependent on copper (Cu) acquisition from the host, which drives critical virulence mechanisms. While C. neoformans Cu+ import and virulence are dependent on the Ctr1 and Ctr4 proteins, little is known concerning extracellular Cu ligands that participate in this process. We identified a C. neoformans gene, BIM1, that is strongly induced during Cu limitation and which encodes a protein related to lytic polysaccharide monooxygenases (LPMOs). Surprisingly, bim1 mutants are Cu deficient, and Bim1 function in Cu accumulation depends on Cu2+ coordination and cell-surface association via a glycophosphatidyl inositol anchor. Bim1 participates in Cu uptake in concert with Ctr1 and expression of this pathway drives brain colonization in mouse infection models. These studies demonstrate a role for LPMO-like proteins as a critical factor for Cu acquisition in fungal meningitis.


Asunto(s)
Cobre/metabolismo , Cryptococcus neoformans/metabolismo , Oxigenasas de Función Mixta/metabolismo , Animales , Criptococosis/metabolismo , Cryptococcus neoformans/patogenicidad , Modelos Animales de Enfermedad , Femenino , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Meningitis/metabolismo , Meningitis/fisiopatología , Ratones , Ratones Endogámicos A , Polisacáridos/metabolismo , Virulencia
15.
Nature ; 533(7604): 561-4, 2016 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-27144356

RESUMEN

ATP binding cassette (ABC) transporters play critical roles in maintaining sterol balance in higher eukaryotes. The ABCG5/ABCG8 heterodimer (G5G8) mediates excretion of neutral sterols in liver and intestines. Mutations disrupting G5G8 cause sitosterolaemia, a disorder characterized by sterol accumulation and premature atherosclerosis. Here we use crystallization in lipid bilayers to determine the X-ray structure of human G5G8 in a nucleotide-free state at 3.9 Å resolution, generating the first atomic model of an ABC sterol transporter. The structure reveals a new transmembrane fold that is present in a large and functionally diverse superfamily of ABC transporters. The transmembrane domains are coupled to the nucleotide-binding sites by networks of interactions that differ between the active and inactive ATPases, reflecting the catalytic asymmetry of the transporter. The G5G8 structure provides a mechanistic framework for understanding sterol transport and the disruptive effects of mutations causing sitosterolaemia.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Lipoproteínas/química , Esteroles/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5 , Transportador de Casete de Unión a ATP, Subfamilia G, Miembro 8 , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Biocatálisis , Cristalografía por Rayos X , Humanos , Hipercolesterolemia/genética , Enfermedades Intestinales/genética , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Errores Innatos del Metabolismo Lipídico/genética , Lipoproteínas/genética , Lipoproteínas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Nucleótidos , Fitosteroles/efectos adversos , Fitosteroles/genética , Pliegue de Proteína , Multimerización de Proteína , Estructura Terciaria de Proteína
16.
Int J Mol Sci ; 24(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36613753

RESUMEN

Identified over twenty years ago and distantly related to animal caspases are a group of cysteine proteases known as metacaspases. Throughout the years, much like caspase roles in metazoans, metacaspases have been shown to be involved in regulating cellular death in non-metazoan organisms. Yet, continued research on metacaspases describes these proteins as intricate and multifunctional, displaying striking diversity on distinct biological functions. In this review, we intend to describe the recent advances in our understanding of the divergence of metacaspase functionality in plants and fungi. We will dissect the duality of metacaspase activity in the context of plant-pathogen interactions, providing a unique lens from which to characterize metacaspases in the development, immunity, and stress responses of plants, and the development and virulence of fungi. Furthermore, we explore the evolutionary trajectory of fungal metacaspases to delineate their structure and function. Bridging the gap between metacaspase roles in immunity and pathogenicity of plant-pathogen interactions can enable more effective and targeted phytopathogen control efforts to increase production of globally important food crops. Therefore, the exploitation and manipulation of metacaspases in plants or fungi represent new potential avenues for developing mitigation strategies against plant pathogens.


Asunto(s)
Apoptosis , Caspasas , Animales , Caspasas/metabolismo , Plantas/metabolismo , Muerte Celular , Hongos/metabolismo
17.
Proteins ; 89(12): 1700-1710, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34455641

RESUMEN

The high accuracy of some CASP14 models at the domain level prompted a more detailed evaluation of structure predictions on whole targets. For the first time in critical assessment of structure prediction (CASP), we evaluated accuracy of difficult domain assembly in models submitted for multidomain targets where the community predicted individual evaluation units (EUs) with greater accuracy than full-length targets. Ten proteins with domain interactions that did not show evidence of conformational change and were not involved in significant oligomeric contacts were chosen as targets for the domain interaction assessment. Groups were ranked using complementary interaction scores (F1, QS score, and Jaccard coefficient), and their predictions were evaluated for their ability to correctly model inter-domain interfaces and overall protein folds. Target performance was broadly grouped into two clusters. The first consisted primarily of targets containing two EUs wherein predictors more broadly predicted domain positioning and interfacial contacts correctly. The other consisted of complex two-EU and three-EU targets where few predictors performed well. The highest ranked predictor, AlphaFold2, produced high-accuracy models on eight out of 10 targets. Their interdomain scores on three of these targets were significantly higher than all other groups and were responsible for their overall outperformance in the category. We further highlight the performance of AlphaFold2 and the next best group, BAKER-experimental on several interesting targets.


Asunto(s)
Modelos Moleculares , Conformación Proteica , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Proteínas , Biología Computacional , Unión Proteica , Proteínas/química , Proteínas/metabolismo , Análisis de Secuencia de Proteína , Programas Informáticos
18.
Proteins ; 89(12): 1618-1632, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34350630

RESUMEN

An evolutionary-based definition and classification of target evaluation units (EUs) is presented for the 14th round of the critical assessment of structure prediction (CASP14). CASP14 targets included 84 experimental models submitted by various structural groups (designated T1024-T1101). Targets were split into EUs based on the domain organization of available templates and performance of server groups. Several targets required splitting (19 out of 25 multidomain targets) due in part to observed conformation changes. All in all, 96 CASP14 EUs were defined and assigned to tertiary structure assessment categories (Topology-based FM or High Accuracy-based TBM-easy and TBM-hard) considering their evolutionary relationship to existing ECOD fold space: 24 family level, 50 distant homologs (H-group), 12 analogs (X-group), and 10 new folds. Principal component analysis and heatmap visualization of sequence and structure similarity to known templates as well as performance of servers highlighted trends in CASP14 target difficulty. The assigned evolutionary levels (i.e., H-groups) and assessment classes (i.e., FM) displayed overlapping clusters of EUs. Many viral targets diverged considerably from their template homologs and thus were more difficult for prediction than other homology-related targets. On the other hand, some targets did not have sequence-identifiable templates, but were predicted better than expected due to relatively simple arrangements of secondary structural elements. An apparent improvement in overall server performance in CASP14 further complicated traditional classification, which ultimately assigned EUs into high-accuracy modeling (27 TBM-easy and 31 TBM-hard), topology (23 FM), or both (15 FM/TBM).


Asunto(s)
Modelos Moleculares , Conformación Proteica , Proteínas , Secuencia de Aminoácidos , Biología Computacional , Evolución Molecular , Proteínas/química , Proteínas/genética , Análisis de Secuencia de Proteína , Programas Informáticos
19.
Proteins ; 89(12): 1673-1686, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34240477

RESUMEN

This report describes the tertiary structure prediction assessment of difficult modeling targets in the 14th round of the Critical Assessment of Structure Prediction (CASP14). We implemented an official ranking scheme that used the same scores as the previous CASP topology-based assessment, but combined these scores with one that emphasized physically realistic models. The top performing AlphaFold2 group outperformed the rest of the prediction community on all but two of the difficult targets considered in this assessment. They provided high quality models for most of the targets (86% over GDT_TS 70), including larger targets above 150 residues, and they correctly predicted the topology of almost all the rest. AlphaFold2 performance was followed by two manual Baker methods, a Feig method that refined Zhang-server models, two notable automated Zhang server methods (QUARK and Zhang-server), and a Zhang manual group. Despite the remarkable progress in protein structure prediction of difficult targets, both the prediction community and AlphaFold2, to a lesser extent, faced challenges with flexible regions and obligate oligomeric assemblies. The official ranking of top-performing methods was supported by performance generated PCA and heatmap clusters that gave insight into target difficulties and the most successful state-of-the-art structure prediction methodologies.


Asunto(s)
Biología Computacional/métodos , Modelos Moleculares , Conformación Proteica , Pliegue de Proteína , Programas Informáticos , Bases de Datos de Proteínas , Proteínas/química , Proteínas/metabolismo , Análisis de Secuencia de Proteína
20.
Adv Anat Pathol ; 28(4): 251-257, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34009776

RESUMEN

Recent advances in molecular genetics have expanded our knowledge of renal tumors and enabled a better classification. These studies have revealed that renal tumors with predominantly "eosinophilic/oncocytic" cytoplasm include several novel biological subtypes beyond the traditionally well-recognized renal oncocytoma and an eosinophilic variant of chromophobe renal cell carcinoma. Herein, we present a comprehensive review of the eosinophilic vacuolated tumor (EVT) building upon a case report including radiology, histopathology, electron microscopy, and next-generation sequencing. EVTs are characterized by mTORC1 activation. We speculate that loss of chromosome 1 in EVT with MTOR mutation may be driven in part by an advantage conferred by loss of the remaining MTOR wild-type allele. mTORC1 is best known for its role in promoting protein translation and it is interesting that dilated cisterns of rough endoplasmic reticulum (ER) likely account for the cytoplasmic vacuoles seen by light microscopy. We present an integrated view of EVT as well as cues that can assist in the differential diagnosis.


Asunto(s)
Carcinoma de Células Renales/patología , Aberraciones Cromosómicas , Cromosomas Humanos Par 1/genética , Neoplasias Renales/patología , Mutación , Serina-Treonina Quinasas TOR/genética , Biomarcadores de Tumor , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Cromosomas Humanos Par 1/metabolismo , Humanos , Riñón/metabolismo , Riñón/patología , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Masculino , Persona de Mediana Edad , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA