Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(25): e2322475121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38857404

RESUMEN

Low temperatures and cooling agents like menthol induce cold sensation by activating the peripheral cold receptors TRPM8 and TRPA1, cation channels belonging to the TRP channel family, while the reduction of potassium currents provides an additional and/or synergistic mechanism of cold sensation. Despite extensive studies over the past decades to identify the molecular receptors that mediate thermosensation, cold sensation is still not fully understood and many cold-sensitive peripheral neurons do not express the well-established cold sensor TRPM8. We found that the voltage-gated potassium channel KCNQ1 (Kv7.1), which is defective in cardiac LQT1 syndrome, is, in addition to its known function in the heart, a highly relevant and sex-specific sensor of moderately cold temperatures. We found that KCNQ1 is expressed in skin and dorsal root ganglion neurons, is sensitive to menthol and cooling agents, and is highly sensitive to moderately cold temperatures, in a temperature range at which TRPM8 is not thermosensitive. C-fiber recordings from KCNQ1-/- mice displayed altered action potential firing properties. Strikingly, only male KCNQ1-/- mice showed substantial deficits in cold avoidance at moderately cold temperatures, with a strength of the phenotype similar to that observed in TRPM8-/- animals. While sex-dependent differences in thermal sensitivity have been well documented in humans and mice, KCNQ1 is the first gene reported to play a role in sex-specific temperature sensation. Moreover, we propose that KCNQ1, together with TRPM8, is a key instrumentalist that orchestrates the range and intensity of cold sensation.


Asunto(s)
Frío , Canal de Potasio KCNQ1 , Animales , Masculino , Femenino , Ratones , Canal de Potasio KCNQ1/metabolismo , Canal de Potasio KCNQ1/genética , Ratones Noqueados , Ganglios Espinales/metabolismo , Sensación Térmica/fisiología , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPM/genética , Ratones Endogámicos C57BL , Potenciales de Acción/fisiología , Caracteres Sexuales , Mentol/farmacología
2.
Nature ; 582(7812): 443-447, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32499642

RESUMEN

TWIK-related acid-sensitive potassium (TASK) channels-members of the two pore domain potassium (K2P) channel family-are found in neurons1, cardiomyocytes2-4 and vascular smooth muscle cells5, where they are involved in the regulation of heart rate6, pulmonary artery tone5,7, sleep/wake cycles8 and responses to volatile anaesthetics8-11. K2P channels regulate the resting membrane potential, providing background K+ currents controlled by numerous physiological stimuli12-15. Unlike other K2P channels, TASK channels are able to bind inhibitors with high affinity, exceptional selectivity and very slow compound washout rates. As such, these channels are attractive drug targets, and TASK-1 inhibitors are currently in clinical trials for obstructive sleep apnoea and atrial fibrillation16. In general, potassium channels have an intramembrane vestibule with a selectivity filter situated above and a gate with four parallel helices located below; however, the K2P channels studied so far all lack a lower gate. Here we present the X-ray crystal structure of TASK-1, and show that it contains a lower gate-which we designate as an 'X-gate'-created by interaction of the two crossed C-terminal M4 transmembrane helices at the vestibule entrance. This structure is formed by six residues (243VLRFMT248) that are essential for responses to volatile anaesthetics10, neurotransmitters13 and G-protein-coupled receptors13. Mutations within the X-gate and the surrounding regions markedly affect both the channel-open probability and the activation of the channel by anaesthetics. Structures of TASK-1 bound to two high-affinity inhibitors show that both compounds bind below the selectivity filter and are trapped in the vestibule by the X-gate, which explains their exceptionally low washout rates. The presence of the X-gate in TASK channels explains many aspects of their physiological and pharmacological behaviour, which will be beneficial for the future development and optimization of TASK modulators for the treatment of heart, lung and sleep disorders.


Asunto(s)
Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/química , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Canales de Potasio de Dominio Poro en Tándem/química , Anestésicos/farmacología , Animales , Cristalografía por Rayos X , Conductividad Eléctrica , Femenino , Humanos , Activación del Canal Iónico/efectos de los fármacos , Modelos Moleculares , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Técnicas de Placa-Clamp , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Xenopus laevis
3.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37372947

RESUMEN

CACNA1C encodes the pore-forming α1C subunit of the L-type Ca2+ channel, Cav1.2. Mutations and polymorphisms of the gene are associated with neuropsychiatric and cardiac disease. Haploinsufficient Cacna1c+/- rats represent a recently developed model with a behavioral phenotype, but its cardiac phenotype is unknown. Here, we unraveled the cardiac phenotype of Cacna1c+/- rats with a main focus on cellular Ca2+ handling mechanisms. Under basal conditions, isolated ventricular Cacna1c+/- myocytes exhibited unaltered L-type Ca2+ current, Ca2+ transients (CaTs), sarcoplasmic reticulum (SR) Ca2+ load, fractional release, and sarcomere shortenings. However, immunoblotting of left ventricular (LV) tissue revealed reduced expression of Cav1.2, increased expression of SERCA2a and NCX, and augmented phosphorylation of RyR2 (at S2808) in Cacna1c+/- rats. The ß-adrenergic agonist isoprenaline increased amplitude and accelerated decay of CaTs and sarcomere shortenings in both Cacna1c+/- and WT myocytes. However, the isoprenaline effect on CaT amplitude and fractional shortening (but not CaT decay) was impaired in Cacna1c+/- myocytes exhibiting both reduced potency and efficacy. Moreover, sarcolemmal Ca2+ influx and fractional SR Ca2+ release after treatment with isoprenaline were smaller in Cacna1c+/- than in WT myocytes. In Langendorff-perfused hearts, the isoprenaline-induced increase in RyR2 phosphorylation at S2808 and S2814 was attenuated in Cacna1c+/- compared to WT hearts. Despite unaltered CaTs and sarcomere shortenings, Cacna1c+/- myocytes display remodeling of Ca2+ handling proteins under basal conditions. Mimicking sympathetic stress with isoprenaline unmasks an impaired ability to stimulate Ca2+ influx, SR Ca2+ release, and CaTs caused, in part, by reduced phosphorylation reserve of RyR2 in Cacna1c+/- cardiomyocytes.


Asunto(s)
Calcio , Canal Liberador de Calcio Receptor de Rianodina , Ratas , Animales , Calcio/metabolismo , Isoproterenol/farmacología , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Señalización del Calcio , Calcio de la Dieta/farmacología , Retículo Sarcoplasmático/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo
4.
Cell Physiol Biochem ; 55(S3): 87-107, 2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33667333

RESUMEN

Potassium channels of the tandem of two-pore-domain (K2P) family were among the last potassium channels cloned. However, recent progress in understanding their physiological relevance and molecular pharmacology revealed their therapeutic potential and thus these channels evolved as major drug targets against a large variety of diseases. However, after the initial cloning of the fifteen family members there was a lack of potent and/or selective modulators. By now a large variety of K2P channel modulators (activators and blockers) have been described, especially for TASK-1, TASK-3, TREK-1, TREK2, TRAAK and TRESK channels. Recently obtained crystal structures of K2P channels, alanine scanning approaches to map drug binding sites, in silico experiments with molecular dynamics simulations (MDs) combined with electrophysiological studies to reveal the mechanism of channel inhibition/activation, yielded a good understanding of the molecular pharmacology of these channels. Besides summarizing drugs that were identified to modulate K2P channels, the main focus of this article is on describing the differential binding sites and mechanisms of channel modulation that are utilized by the different K2P channel blockers and activators.


Asunto(s)
Trastorno del Sistema de Conducción Cardíaco/tratamiento farmacológico , Moduladores del Transporte de Membrana/farmacología , Trastornos Migrañosos/tratamiento farmacológico , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Potasio/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Sitios de Unión , Trastorno del Sistema de Conducción Cardíaco/genética , Trastorno del Sistema de Conducción Cardíaco/metabolismo , Trastorno del Sistema de Conducción Cardíaco/patología , Expresión Génica , Humanos , Activación del Canal Iónico/efectos de los fármacos , Transporte Iónico , Ligandos , Moduladores del Transporte de Membrana/química , Moduladores del Transporte de Membrana/clasificación , Trastornos Migrañosos/genética , Trastornos Migrañosos/metabolismo , Trastornos Migrañosos/patología , Simulación de Dinámica Molecular , Especificidad de Órganos , Canales de Potasio de Dominio Poro en Tándem/clasificación , Canales de Potasio de Dominio Poro en Tándem/genética , Unión Proteica , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Secundaria de Proteína
5.
Molecules ; 26(13)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202296

RESUMEN

TASK channels belong to the two-pore-domain potassium (K2P) channels subfamily. These channels modulate cellular excitability, input resistance, and response to synaptic stimulation. TASK-channel inhibition led to membrane depolarization. TASK-3 is expressed in different cancer cell types and neurons. Thus, the discovery of novel TASK-3 inhibitors makes these bioactive compounds very appealing to explore new cancer and neurological therapies. TASK-3 channel blockers are very limited to date, and only a few heterofused compounds have been reported in the literature. In this article, we combined a pharmacophore hypothesis with molecular docking to address for the first time the rational design, synthesis, and evaluation of 5-(indol-2-yl)pyrazolo[3,4-b]pyridines as a novel family of human TASK-3 channel blockers. Representative compounds of the synthesized library were assessed against TASK-3 using Fluorometric imaging plate reader-Membrane Potential assay (FMP). Inhibitory properties were validated using two-electrode voltage-clamp (TEVC) methods. We identified one active hit compound (MM-3b) with our systematic pipeline, exhibiting an IC50 ≈ 30 µM. Molecular docking models suggest that compound MM-3b binds to TASK-3 at the bottom of the selectivity filter in the central cavity, similar to other described TASK-3 blockers such as A1899 and PK-THPP. Our in silico and experimental studies provide a new tool to predict and design novel TASK-3 channel blockers.


Asunto(s)
Simulación del Acoplamiento Molecular , Bloqueadores de los Canales de Potasio , Canales de Potasio de Dominio Poro en Tándem , Piridinas , Humanos , Bloqueadores de los Canales de Potasio/síntesis química , Bloqueadores de los Canales de Potasio/química , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Canales de Potasio de Dominio Poro en Tándem/química , Piridinas/síntesis química , Piridinas/química
6.
J Mol Cell Cardiol ; 145: 74-83, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32535041

RESUMEN

Despite recent progress in the understanding of cardiac ion channel function and its role in inherited forms of ventricular arrhythmias, the molecular basis of cardiac conduction disorders often remains unresolved. We aimed to elucidate the genetic background of familial atrioventricular block (AVB) using a whole exome sequencing (WES) approach. In monozygotic twins with a third-degree AVB and in another, unrelated family with first-degree AVB, we identified a heterozygous nonsense mutation in the POPDC2 gene causing a premature stop at position 188 (POPDC2W188⁎), deleting parts of its cAMP binding-domain. Popeye-domain containing (POPDC) proteins are predominantly expressed in the skeletal muscle and the heart, with particularly high expression of POPDC2 in the sinoatrial node of the mouse. We now show by quantitative PCR experiments that in the human heart the POPDC-modulated two-pore domain potassium (K2P) channel TREK-1 is preferentially expressed in the atrioventricular node. Co-expression studies in Xenopus oocytes revealed that POPDC2W188⁎ causes a loss-of-function with impaired TREK-1 modulation. Consistent with the high expression level of POPDC2 in the murine sinoatrial node, POPDC2W188⁎ knock-in mice displayed stress-induced sinus bradycardia and pauses, a phenotype that was previously also reported for POPDC2 and TREK-1 knock-out mice. We propose that the POPDC2W188⁎ loss-of-function mutation contributes to AVB pathogenesis by an aberrant modulation of TREK-1, highlighting that POPDC2 represents a novel arrhythmia gene for cardiac conduction disorders.


Asunto(s)
Trastorno del Sistema de Conducción Cardíaco/genética , Moléculas de Adhesión Celular/genética , Predisposición Genética a la Enfermedad , Proteínas Musculares/genética , Potenciales de Acción , Animales , Bloqueo Atrioventricular/genética , Bradicardia/complicaciones , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Estudios de Asociación Genética , Sistema de Conducción Cardíaco/metabolismo , Sistema de Conducción Cardíaco/patología , Heterocigoto , Homocigoto , Humanos , Leucocitos/metabolismo , Ratones Transgénicos , Proteínas Musculares/metabolismo , Mutación/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , ARN/metabolismo , Nodo Sinoatrial/metabolismo , Estrés Fisiológico , Secuenciación del Exoma , Xenopus laevis
7.
Cell Physiol Biochem ; 52(5): 1223-1235, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31001961

RESUMEN

BACKGROUND/AIMS: The two-pore-domain potassium channel TASK-1 regulates atrial action potential duration. Due to the atrium-specific expression of TASK-1 in the human heart and the functional upregulation of TASK-1 currents in atrial fibrillation (AF), TASK-1 represents a promising target for the treatment of AF. Therefore, detailed knowledge of the molecular determinants of TASK-1 inhibition may help to identify new drugs for the future therapy of AF. In the current study, the molecular determinants of TASK-1 inhibition by the potent and antiarrhythmic compound A293 (AVE1231) were studied in detail. METHODS: Alanine-scanning mutagenesis together with two-electrode voltage-clamp recordings were combined with in silico docking experiments. RESULTS: Here, we have identified Q126 located in the M2 segment together with L239 and N240 of the M4 segment as amino acids essential for the A293-mediated inhibition of TASK-1. These data indicate a binding site which is different to that of A1899 for which also residues of the pore signature sequence and the late M4 segments are essential. Using in silico docking experiments, we propose a binding site at the lower end of the cytosolic pore, located at the entry to lateral side fenestrations of TASK-1. Strikingly, TASK-1 inhibition by the low affinity antiarrhythmic TASK-1 blockers propafenone, amiodarone and carvedilol was also strongly diminished by mutations at this novel binding site. CONCLUSION: We have identified the A293 binding site in the central cavity of TASK-1 and propose that this site might represent a conserved site of action for many low affinity antiarrhythmic TASK-1 blockers.


Asunto(s)
Antiarrítmicos/química , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/química , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Canales de Potasio de Dominio Poro en Tándem/química , Sustitución de Aminoácidos , Animales , Sitios de Unión , Humanos , Mutagénesis Sitio-Dirigida , Mutación Missense , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Xenopus laevis
8.
FASEB J ; 32(11): 6159-6173, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29879376

RESUMEN

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels encode neuronal and cardiac pacemaker currents. The composition of pacemaker channel complexes in different tissues is poorly understood, and the presence of additional HCN modulating subunits was speculated. Here we show that vesicle-associated membrane protein-associated protein B (VAPB), previously associated with a familial form of amyotrophic lateral sclerosis 8, is an essential HCN1 and HCN2 modulator. VAPB significantly increases HCN2 currents and surface expression and has a major influence on the dendritic neuronal distribution of HCN2. Severe cardiac bradycardias in VAPB-deficient zebrafish and VAPB-/- mice highlight that VAPB physiologically serves to increase cardiac pacemaker currents. An altered T-wave morphology observed in the ECGs of VAPB-/- mice supports the recently proposed role of HCN channels for ventricular repolarization. The critical function of VAPB in native pacemaker channel complexes will be relevant for our understanding of cardiac arrhythmias and epilepsies, and provides an unexpected link between these diseases and amyotrophic lateral sclerosis.-Silbernagel, N., Walecki, M., Schäfer, M.-K. H., Kessler, M., Zobeiri, M., Rinné, S., Kiper, A. K., Komadowski, M. A., Vowinkel, K. S., Wemhöner, K., Fortmüller, L., Schewe, M., Dolga, A. M., Scekic-Zahirovic, J., Matschke, L. A., Culmsee, C., Baukrowitz, T., Monassier, L., Ullrich, N. D., Dupuis, L., Just, S., Budde, T., Fabritz, L., Decher, N. The VAMP-associated protein VAPB is required for cardiac and neuronal pacemaker channel function.


Asunto(s)
Corazón/fisiología , Activación del Canal Iónico , Proteínas de la Membrana/fisiología , Neuronas/fisiología , Marcapaso Artificial , Animales , Proteínas Portadoras/fisiología , Embrión no Mamífero/citología , Embrión no Mamífero/fisiología , Femenino , Células HeLa , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Ratones , Ratones Noqueados , Neuronas/citología , Ratas , Ratas Sprague-Dawley , Proteínas de Transporte Vesicular , Xenopus laevis , Pez Cebra
9.
Int J Mol Sci ; 20(16)2019 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-31426491

RESUMEN

TASK-3 is a two-pore domain potassium (K2P) channel highly expressed in the hippocampus, cerebellum, and cortex. TASK-3 has been identified as an oncogenic potassium channel and it is overexpressed in different cancer types. For this reason, the development of new TASK-3 blockers could influence the pharmacological treatment of cancer and several neurological conditions. In the present work, we searched for novel TASK-3 blockers by using a virtual screening protocol that includes pharmacophore modeling, molecular docking, and free energy calculations. With this protocol, 19 potential TASK-3 blockers were identified. These molecules were tested in TASK-3 using patch clamp, and one blocker (DR16) was identified with an IC50 = 56.8 ± 3.9 µM. Using DR16 as a scaffold, we designed DR16.1, a novel TASK-3 inhibitor, with an IC50 = 14.2 ± 3.4 µM. Our finding takes on greater relevance considering that not many inhibitory TASK-3 modulators have been reported in the scientific literature until today. These two novel TASK-3 channel inhibitors (DR16 and DR16.1) are the first compounds found using a pharmacophore-based virtual screening and rational drug design protocol.


Asunto(s)
Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Diseño de Fármacos , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Bloqueadores de los Canales de Potasio/farmacocinética
10.
Int J Mol Sci ; 20(9)2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067753

RESUMEN

TASK-3 potassium (K+) channels are highly expressed in the central nervous system, regulating the membrane potential of excitable cells. TASK-3 is involved in neurotransmitter action and has been identified as an oncogenic K+ channel. For this reason, the understanding of the action mechanism of pharmacological modulators of these channels is essential to obtain new therapeutic strategies. In this study we describe the binding mode of the potent antagonist PK-THPP into the TASK-3 channel. PK-THPP blocks TASK-1, the closest relative channel of TASK-3, with almost nine-times less potency. Our results confirm that the binding is influenced by the fenestrations state of TASK-3 channels and occurs when they are open. The binding is mainly governed by hydrophobic contacts between the blocker and the residues of the binding site. These interactions occur not only for PK-THPP, but also for the antagonist series based on 5,6,7,8 tetrahydropyrido[4,3-d]pyrimidine scaffold (THPP series). However, the marked difference in the potency of THPP series compounds such as 20b, 21, 22 and 23 (PK-THPP) respect to compounds such as 17b, inhibiting TASK-3 channels in the micromolar range is due to the presence of a hydrogen bond acceptor group that can establish interactions with the threonines of the selectivity filter.


Asunto(s)
Simulación del Acoplamiento Molecular , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Dominio Poro en Tándem/química , Piridinas/farmacología , Pirimidinas/farmacología , Animales , Sitios de Unión , Humanos , Bloqueadores de los Canales de Potasio/química , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Unión Proteica , Piridinas/química , Pirimidinas/química , Xenopus
11.
Cell Physiol Biochem ; 44(3): 1024-1037, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29179200

RESUMEN

BACKGROUND/AIMS: TASK channels belong to the two-pore-domain potassium (K2P) channel family. TASK-1 is discussed to contribute to chronic atrial fibrillation (AFib) and has been together with uncoupling protein 1 found as a marker protein of brown adipose tissue (BAT) fat. In addition, TASK-1 was linked in a genome-wide association study to an increased body mass index. A recent study showed that TASK-1 inhibition is causing obesity in mice by a BAT whitening and that these effects are linked to the mineralocorticoid receptor pathway, albeit the mechanism remained elusive. Therefore, we aimed to probe whether K2P channels are regulated by serum- and glucocorticoid-inducible kinases (SGKs) which are known to modify many cellular functions by modulating ion channels. METHODS: To this end we used functional co-expression studies and chemiluminescence-assays in Xenopus oocytes, together with fluorescence imaging and quantitative PCR experiments. RESULTS: SGKs and proteinkinase B (PKB) induced a strong, dose- and time-dependent current reduction of TASK-1 and TASK-3. SGK co-expression reduced the surface expression of TASK-1/3, leading to a predominant localization of the channels into late endosomes. The down regulation of TASK-3 channels was abrogated by the dynamin inhibitor dynasore, confirming a role of SGKs in TASK-1/3 channel endocytosis. CONCLUSION: Stress-mediated changes in SGK expression pattern or activation is likely to alter TASK-1/3 expression at the surface membrane. The observed TASK-1 regulation might contribute to the pathogenesis of chronic AFib and provide a mechanistic link between increased mineralocorticoid levels and TASK-1 reduction, both linked to BAT whitening.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Animales , Células COS , Chlorocebus aethiops , Clatrina/metabolismo , Endocitosis , Endosomas/metabolismo , Células HeLa , Humanos , Hidrazonas/farmacología , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Mediciones Luminiscentes , Microscopía Fluorescente , Proteínas del Tejido Nervioso/genética , Oocitos/química , Oocitos/fisiología , Técnicas de Placa-Clamp , Plásmidos/genética , Plásmidos/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Imagen de Lapso de Tiempo , Xenopus laevis/crecimiento & desarrollo
12.
J Mol Cell Cardiol ; 81: 71-80, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25655935

RESUMEN

TASK-1 channels have emerged as promising drug targets against atrial fibrillation, the most common arrhythmia in the elderly. While TASK-3, the closest relative of TASK-1, was previously not described in cardiac tissue, we found a very prominent expression of TASK-3 in right human auricles. Immunocytochemistry experiments of human right auricular cardiomyocytes showed that TASK-3 is primarily localized at the plasma membrane. Single-channel recordings of right human auricles in the cell-attached mode, using divalent-cation-free solutions, revealed a TASK-1-like channel with a single-channel conductance of about 30pS. While homomeric TASK-3 channels were not found, we observed an intermediate single-channel conductance of about 55pS, possibly reflecting the heteromeric channel formed by TASK-1 and TASK-3. Subsequent experiments with TASK-1/TASK-3 tandem channels or with co-expressed TASK-1 and TASK-3 channels in HEK293 cells or Xenopus oocytes, supported that the 55pS channels observed in right auricles have electrophysiological characteristics of TASK-1/TASK-3 heteromers. In addition, co-expression experiments and single-channel recordings suggest that heteromeric TASK-1/TASK-3 channels have a predominant surface expression and a reduced affinity for TASK-1 blockers. In summary, the evidence for heteromeric TASK-1/TASK-3 channel complexes together with an altered pharmacologic response to TASK-1 blockers in vitro is likely to have further impact for studies isolating ITASK-1 from cardiomyocytes and for the development of drugs specifically targeting TASK-1 in atrial fibrillation treatment.


Asunto(s)
Fibrilación Atrial/metabolismo , Atrios Cardíacos/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Fibrilación Atrial/patología , Fibrilación Atrial/cirugía , Benzamidas/farmacología , Bencenoacetamidas/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Femenino , Regulación de la Expresión Génica , Células HEK293 , Atrios Cardíacos/citología , Humanos , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Oocitos/citología , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Canales de Potasio de Dominio Poro en Tándem/genética , Cultivo Primario de Células , Multimerización de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Sulfonamidas/farmacología , Xenopus laevis , ortoaminobenzoatos/farmacología
13.
Pflugers Arch ; 467(5): 1055-67, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25404566

RESUMEN

The current kinetics of two-pore domain potassium (K2P) channels resemble those of the steady-state K(+) currents being active during the plateau phase of cardiac action potentials. Recent studies support that K2P channels contribute to these cardiac currents and thereby influence action potential duration in the heart. Ten of the 15 K2P channels present in the human genome are sensitive to variations of the extracellular and/or intracellular pH value. This review focuses on a set of K2P channels which are inhibited by extracellular protons, including the subgroup of tandem of P domains in a weak inward-rectifying K(+) (TWIK)-related acid-sensitive potassium (TASK) and TWIK-related alkaline-activated K(+) (TALK) channels. The role of TWIK-1 in the heart is also discussed since, after successful expression, an extracellular pH dependence, similar to that of TASK-1, was described as a hallmark of TWIK-1. The expression profile in cardiac tissue of different species and the functional data in the heart are summarized. The distinct role of the different acid-sensitive K2P channels in cardiac electrophysiology, inherited forms of arrhythmias and pharmacology, and their role as drug targets is currently emerging and is the subject of this review.


Asunto(s)
Arritmias Cardíacas/metabolismo , Electrofisiología Cardíaca , Potenciales de la Membrana/fisiología , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Potasio/metabolismo , Potenciales de Acción/fisiología , Animales , Electrofisiología Cardíaca/métodos , Humanos
14.
Pflugers Arch ; 467(5): 1081-90, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25511502

RESUMEN

Atrial fibrillation and obstructive sleep apnea are responsible for significant morbidity and mortality in the industrialized world. There is a high medical need for novel drugs against both diseases, and here, Kv1.5 channels have emerged as promising drug targets. In humans, TASK-1 has an atrium-specific expression and TASK-1 is also abundantly expressed in the hypoglossal motor nucleus. We asked whether known Kv1.5 channel blockers, effective against atrial fibrillation and/or obstructive sleep apnea, modulate TASK-1 channels. Therefore, we tested Kv1.5 blockers with different chemical structures for their TASK-1 affinity, utilizing two-electrode voltage clamp (TEVC) recordings in Xenopus oocytes. Despite the low structural conservation of Kv1.5 and TASK-1 channels, we found all Kv1.5 blockers analyzed to be even more effective on TASK-1 than on Kv1.5. For instance, the half-maximal inhibitory concentration (IC50) values of AVE0118 and AVE1231 (A293) were 10- and 43-fold lower on TASK-1. Also for MSD-D, ICAGEN-4, S20951 (A1899), and S9947, the IC50 values were 1.4- to 70-fold lower than for Kv1.5. To describe this phenomenon on a molecular level, we used in silico models and identified unexpected structural similarities between the two drug binding sites. Kv1.5 blockers, like AVE0118 and AVE1231, which are promising drugs against atrial fibrillation or obstructive sleep apnea, are in fact potent TASK-1 blockers. Accordingly, block of TASK-1 channels by these compounds might contribute to the clinical effectiveness of these drugs. The higher affinity of these blockers for TASK-1 channels suggests that TASK-1 might be an unrecognized molecular target of Kv1.5 blockers effective in atrial fibrillation or obstructive sleep apnea.


Asunto(s)
Antiarrítmicos/farmacología , Fibrilación Atrial/metabolismo , Canal de Potasio Kv1.5/antagonistas & inhibidores , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Apnea Obstructiva del Sueño/tratamiento farmacológico , Animales , Fibrilación Atrial/tratamiento farmacológico , Compuestos de Bifenilo/farmacología , Canal de Potasio Kv1.5/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Apnea Obstructiva del Sueño/metabolismo , Xenopus laevis/metabolismo
15.
iScience ; 27(5): 109696, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38689644

RESUMEN

Popeye domain containing (POPDC) proteins are predominantly expressed in the heart and skeletal muscle, modulating the K2P potassium channel TREK-1 in a cAMP-dependent manner. POPDC1 and POPDC2 variants cause cardiac conduction disorders with or without muscular dystrophy. Searching for POPDC2-modulated ion channels using a functional co-expression screen in Xenopus oocytes, we found POPDC proteins to modulate the cardiac sodium channel Nav1.5. POPDC proteins downregulate Nav1.5 currents in a cAMP-dependent manner by reducing the surface expression of the channel. POPDC2 and Nav1.5 are both expressed in different regions of the murine heart and consistently POPDC2 co-immunoprecipitates with Nav1.5 from native cardiac tissue. Strikingly, the knock-down of popdc2 in embryonic zebrafish caused an increased upstroke velocity and overshoot of cardiac action potentials. The POPDC modulation of Nav1.5 provides a new mechanism to regulate cardiac sodium channel densities under sympathetic stimulation, which is likely to have a functional impact on cardiac physiology and inherited arrhythmias.

16.
Commun Biol ; 6(1): 745, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37464013

RESUMEN

The TWIK-related spinal cord K+ channel (TRESK, K2P18.1) is a K2P channel contributing to the maintenance of membrane potentials in various cells. Recently, physiological TRESK function was identified as a key player in T-cell differentiation rendering the channel a new pharmacological target for treatment of autoimmune diseases. The channel activator cloxyquin represents a promising lead compound for the development of a new class of immunomodulators. Identification of cloxyquin binding site and characterization of the molecular activation mechanism can foster the future drug development. Here, we identify the cloxyquin binding site at the M2/M4 interface by mutational scan and analyze the molecular mechanism of action by protein modeling as well as in silico and in vitro electrophysiology using different permeating ion species (K+ / Rb+). In combination with kinetic analyses of channel inactivation, our results suggest that cloxyquin allosterically stabilizes the inner selectivity filter facilitating the conduction process subsequently activating hTRESK.


Asunto(s)
Cloroquinolinoles , Canales de Potasio , Canales de Potasio/química , Sitios de Unión , Cloroquinolinoles/química , Cloroquinolinoles/farmacología , Potenciales de la Membrana
17.
Front Pharmacol ; 13: 855792, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370665

RESUMEN

The identification of similar three-dimensional (3D) amino acid patterns among different proteins might be helpful to explain the polypharmacological profile of many currently used drugs. Also, it would be a reasonable first step for the design of novel multitarget compounds. Most of the current computational tools employed for this aim are limited to the comparisons among known binding sites, and do not consider several additional important 3D patterns such as allosteric sites or other conserved motifs. In the present work, we introduce Geomfinder2.0, which is a new and improved version of our previously described algorithm for the deep exploration and discovery of similar and druggable 3D patterns. As compared with the original version, substantial improvements that have been incorporated to our software allow: (i) to compare quaternary structures, (ii) to deal with a list of pairs of structures, (iii) to know how druggable is the zone where similar 3D patterns are detected and (iv) to significantly reduce the execution time. Thus, the new algorithm achieves up to 353x speedup as compared to the previous sequential version, allowing the exploration of a significant number of quaternary structures in a reasonable time. In order to illustrate the potential of the updated Geomfinder version, we show a case of use in which similar 3D patterns were detected in the cardiac ions channels NaV1.5 and TASK-1. These channels are quite different in terms of structure, sequence and function and both have been regarded as important targets for drugs aimed at treating atrial fibrillation. Finally, we describe the in vitro effects of tafluprost (a drug currently used to treat glaucoma, which was identified as a novel putative ligand of NaV1.5 and TASK-1) upon both ion channels' activity and discuss its possible repositioning as a novel antiarrhythmic drug.

18.
Sci Rep ; 12(1): 3180, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35210472

RESUMEN

Parkinson's disease (PD) is clinically defined by the presence of the cardinal motor symptoms, which are associated with a loss of dopaminergic nigrostriatal neurons in the substantia nigra pars compacta (SNpc). While SNpc neurons serve as the prototypical cell-type to study cellular vulnerability in PD, there is an unmet need to extent our efforts to other neurons at risk. The noradrenergic locus coeruleus (LC) represents one of the first brain structures affected in Parkinson's disease (PD) and plays not only a crucial role for the evolving non-motor symptomatology, but it is also believed to contribute to disease progression by efferent noradrenergic deficiency. Therefore, we sought to characterize the electrophysiological properties of LC neurons in two distinct PD models: (1) in an in vivo mouse model of focal α-synuclein overexpression; and (2) in an in vitro rotenone-induced PD model. Despite the fundamental differences of these two PD models, α-synuclein overexpression as well as rotenone exposure led to an accelerated autonomous pacemaker frequency of LC neurons, accompanied by severe alterations of the afterhyperpolarization amplitude. On the mechanistic side, we suggest that Ca2+-activated K+ (SK) channels are mediators of the increased LC neuronal excitability, as pharmacological activation of these channels is sufficient to prevent increased LC pacemaking and subsequent neuronal loss in the LC following in vitro rotenone exposure. These findings suggest a role of SK channels in PD by linking α-synuclein- and rotenone-induced changes in LC firing rate to SK channel dysfunction.


Asunto(s)
Norepinefrina/fisiología , Enfermedad de Parkinson/fisiopatología , Porción Compacta de la Sustancia Negra/fisiología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/fisiología , alfa-Sinucleína/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Locus Coeruleus/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Síntomas Prodrómicos , Rotenona
19.
J Med Chem ; 65(22): 15014-15027, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36378530

RESUMEN

Chemical structures of selective blockers of TASK channels contain aromatic groups and amide bonds. Using this rationale, we designed and synthesized a series of compounds based on 3-benzamidobenzoic acid. These compounds block TASK-1 channels by binding to the central cavity. The most active compound is 3-benzoylamino-N-(2-ethyl-phenyl)-benzamide or F3, blocking TASK-1 with an IC50 of 148 nM, showing a reduced inhibition of TASK-3 channels and not a significant effect on different K+ channels. We identified putative F3-binding sites in the TASK-1 channel by molecular modeling studies. Mutation of seven residues to A (I118A, L122A, F125A, Q126A, L232A, I235A, and L239A) markedly decreased the F3-induced inhibition of TASK-1 channels, consistent with the molecular modeling predictions. F3 blocks cell proliferation and viability in the MCF-7 cancer cell line but not in TASK-1 knockdown MCF-7 cells, indicating that it is acting in TASK-1 channels. These results indicated that TASK-1 is necessary to drive proliferation in the MCF-7 cancer cell line.


Asunto(s)
Neoplasias , Humanos , Relación Estructura-Actividad , Sitios de Unión , Proliferación Celular , Modelos Moleculares , Células MCF-7
20.
Br J Pharmacol ; 178(15): 3034-3048, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33817777

RESUMEN

BACKGROUND AND PURPOSE: Local anaesthetics block sodium and a variety of potassium channels. Although previous studies identified a residue in the pore signature sequence together with three residues in the S6 segment as a putative binding site, the precise molecular basis of inhibition of Kv channels by local anaesthetics remained unknown. Crystal structures of Kv channels predict that some of these residues point away from the central cavity and face into a drug binding site called side pockets. Thus, the question arises whether the binding site of local anaesthetics is exclusively located in the central cavity or also involves the side pockets. EXPERIMENTAL APPROACH: A systematic functional alanine mutagenesis approach, scanning 58 mutants, together with in silico docking experiments and molecular dynamics simulations was utilized to elucidate the binding site of bupivacaine and ropivacaine. KEY RESULTS: Inhibition of Kv 1.5 channels by local anaesthetics requires binding to the central cavity and the side pockets, and the latter requires interactions with residues of the S5 and the back of the S6 segments. Mutations in the side pockets remove stereoselectivity of inhibition of Kv 1.5 channels by bupivacaine. Although binding to the side pockets is conserved for different local anaesthetics, the binding mode in the central cavity and the side pockets shows considerable variations. CONCLUSION AND IMPLICATIONS: Local anaesthetics bind to the central cavity and the side pockets, which provide a crucial key to the molecular understanding of their Kv channel affinity and stereoselectivity, as well as their spectrum of side effects.


Asunto(s)
Anestésicos Locales , Canales de Potasio/química , Anestésicos Locales/farmacología , Sitios de Unión , Bupivacaína/farmacología , Humanos , Simulación del Acoplamiento Molecular , Ropivacaína/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA