Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Curr Opin Hematol ; 30(4): 117-123, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37254854

RESUMEN

PURPOSE OF REVIEW: Recent discoveries have provided evidence for mechanistic links between the master regulator of hematopoiesis GATA2 and the key component of interferon and innate immunity signaling pathways, interferon-regulatory factor-8 (IRF8). These links have important implications for the control of myeloid differentiation in physiological and pathological states. RECENT FINDINGS: GATA2 deficiency resulting from loss of the Gata2 -77 enhancer in progenitors triggers an alarm that instigates the transcriptional induction of innate immune signaling and distorts a myeloid differentiation program. This pathological alteration renders progenitors hyperresponsive to interferon γ, toll-like receptor and interleukin-6 signaling and impaired in granulocyte-macrophage colony-stimulating factor signaling. IRF8 upregulation in -77-/- progenitors promotes monocyte and dendritic cell differentiation while suppressing granulocytic differentiation. As PU.1 promotes transcription of Irf8 and other myeloid and B-lineage genes, GATA2-mediated repression of these genes opposes the PU.1-dependent activating mechanism. SUMMARY: As GATA2 deficiency syndrome is an immunodeficiency disorder often involving myelodysplastic syndromes and acute myeloid leukemia, elucidating how GATA2 commissions and decommissions genome activity and developmental regulatory programs will unveil mechanisms that go awry when GATA2 levels and/or activities are disrupted.


Asunto(s)
Deficiencia GATA2 , Humanos , Diferenciación Celular/genética , Factor de Transcripción GATA2/genética , Inmunidad Innata , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Interferones/metabolismo , Animales
2.
Anesthesiology ; 138(3): 299-311, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36538354

RESUMEN

BACKGROUND: Delirium poses significant risks to patients, but countermeasures can be taken to mitigate negative outcomes. Accurately forecasting delirium in intensive care unit (ICU) patients could guide proactive intervention. Our primary objective was to predict ICU delirium by applying machine learning to clinical and physiologic data routinely collected in electronic health records. METHODS: Two prediction models were trained and tested using a multicenter database (years of data collection 2014 to 2015), and externally validated on two single-center databases (2001 to 2012 and 2008 to 2019). The primary outcome variable was delirium defined as a positive Confusion Assessment Method for the ICU screen, or an Intensive Care Delirium Screening Checklist of 4 or greater. The first model, named "24-hour model," used data from the 24 h after ICU admission to predict delirium any time afterward. The second model designated "dynamic model," predicted the onset of delirium up to 12 h in advance. Model performance was compared with a widely cited reference model. RESULTS: For the 24-h model, delirium was identified in 2,536 of 18,305 (13.9%), 768 of 5,299 (14.5%), and 5,955 of 36,194 (11.9%) of patient stays, respectively, in the development sample and two validation samples. For the 12-h lead time dynamic model, delirium was identified in 3,791 of 22,234 (17.0%), 994 of 6,166 (16.1%), and 5,955 of 28,440 (20.9%) patient stays, respectively. Mean area under the receiver operating characteristics curve (AUC) (95% CI) for the first 24-h model was 0.785 (0.769 to 0.801), significantly higher than the modified reference model with AUC of 0.730 (0.704 to 0.757). The dynamic model had a mean AUC of 0.845 (0.831 to 0.859) when predicting delirium 12 h in advance. Calibration was similar in both models (mean Brier Score [95% CI] 0.102 [0.097 to 0.108] and 0.111 [0.106 to 0.116]). Model discrimination and calibration were maintained when tested on the validation datasets. CONCLUSIONS: Machine learning models trained with routinely collected electronic health record data accurately predict ICU delirium, supporting dynamic time-sensitive forecasting.


Asunto(s)
Delirio , Humanos , Delirio/diagnóstico , Unidades de Cuidados Intensivos , Cuidados Críticos/métodos , Hospitalización , Aprendizaje Automático
3.
Mol Cell ; 59(1): 62-74, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26073540

RESUMEN

Thousands of cis-elements in genomes are predicted to have vital functions. Although conservation, activity in surrogate assays, polymorphisms, and disease mutations provide functional clues, deletion from endogenous loci constitutes the gold-standard test. A GATA-2-binding, Gata2 intronic cis-element (+9.5) required for hematopoietic stem cell genesis in mice is mutated in a human immunodeficiency syndrome. Because +9.5 is the only cis-element known to mediate stem cell genesis, we devised a strategy to identify functionally comparable enhancers ("+9.5-like") genome-wide. Gene editing revealed +9.5-like activity to mediate GATA-2 occupancy, chromatin opening, and transcriptional activation. A +9.5-like element resided in Samd14, which encodes a protein of unknown function. Samd14 increased hematopoietic progenitor levels/activity and promoted signaling by a pathway vital for hematopoietic stem/progenitor cell regulation (stem cell factor/c-Kit), and c-Kit rescued Samd14 loss-of-function phenotypes. Thus, the hematopoietic stem/progenitor cell cistrome revealed a mediator of a signaling pathway that has broad importance for stem/progenitor cell biology.


Asunto(s)
Factor de Transcripción GATA2/genética , Células Madre Hematopoyéticas/metabolismo , Proteínas/genética , Proteínas Proto-Oncogénicas c-kit/genética , Activación Transcripcional/genética , Secuencia de Aminoácidos , Animales , Diferenciación Celular/genética , Línea Celular , Ratones , Datos de Secuencia Molecular , Proteínas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal , Transcripción Genética/genética
4.
Nucleic Acids Res ; 49(22): e127, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34581807

RESUMEN

Single-cell transcriptome sequencing (scRNA-seq) enabled investigations of cellular heterogeneity at exceedingly higher resolutions. Identification of novel cell types or transient developmental stages across multiple experimental conditions is one of its key applications. Linear and non-linear dimensionality reduction for data integration became a foundational tool in inference from scRNA-seq data. We present multilayer graph clustering (MLG) as an integrative approach for combining multiple dimensionality reduction of multi-condition scRNA-seq data. MLG generates a multilayer shared nearest neighbor cell graph with higher signal-to-noise ratio and outperforms current best practices in terms of clustering accuracy across large-scale benchmarking experiments. Application of MLG to a wide variety of datasets from multiple conditions highlights how MLG boosts signal-to-noise ratio for fine-grained sub-population identification. MLG is widely applicable to settings with single cell data integration via dimension reduction.


Asunto(s)
RNA-Seq/métodos , Análisis de la Célula Individual/métodos , Algoritmos , Animales , Análisis por Conglomerados , Células Madre Hematopoyéticas/metabolismo , Humanos , Ratones
5.
Development ; 145(1)2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29321181

RESUMEN

Hemoglobin-expressing erythrocytes (red blood cells) act as fundamental metabolic regulators by providing oxygen to cells and tissues throughout the body. Whereas the vital requirement for oxygen to support metabolically active cells and tissues is well established, almost nothing is known regarding how erythrocyte development and function impact regeneration. Furthermore, many questions remain unanswered relating to how insults to hematopoietic stem/progenitor cells and erythrocytes can trigger a massive regenerative process termed 'stress erythropoiesis' to produce billions of erythrocytes. Here, we review the cellular and molecular mechanisms governing erythrocyte development and regeneration, and discuss the potential links between these events and other regenerative processes.


Asunto(s)
Diferenciación Celular/fisiología , Eritrocitos/metabolismo , Eritropoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Regeneración/fisiología , Animales , Transporte Biológico Activo/fisiología , Eritrocitos/citología , Células Madre Hematopoyéticas/citología , Humanos , Oxígeno/metabolismo
6.
Proc Natl Acad Sci U S A ; 115(43): E10109-E10118, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30301799

RESUMEN

By inducing the generation and function of hematopoietic stem and progenitor cells, the master regulator of hematopoiesis GATA-2 controls the production of all blood cell types. Heterozygous GATA2 mutations cause immunodeficiency, myelodysplastic syndrome, and acute myeloid leukemia. GATA2 disease mutations commonly disrupt amino acid residues that mediate DNA binding or cis-elements within a vital GATA2 intronic enhancer, suggesting a haploinsufficiency mechanism of pathogenesis. Mutations also occur in GATA2 coding regions distinct from the DNA-binding carboxyl-terminal zinc finger (C-finger), including the amino-terminal zinc finger (N-finger), and N-finger function is not established. Whether distinct mutations differentially impact GATA-2 mechanisms is unknown. Here, we demonstrate that N-finger mutations decreased GATA-2 chromatin occupancy and attenuated target gene regulation. We developed a genetic complementation assay to quantify GATA-2 function in myeloid progenitor cells from Gata2 -77 enhancer-mutant mice. GATA-2 complementation increased erythroid and myeloid differentiation. While GATA-2 disease mutants were not competent to induce erythroid differentiation of Lin-Kit+ myeloid progenitors, unexpectedly, they promoted myeloid differentiation and proliferation. As the myelopoiesis-promoting activity of GATA-2 mutants exceeded that of GATA-2, GATA2 disease mutations are not strictly inhibitory. Thus, we propose that the haploinsufficiency paradigm does not fully explain GATA-2-linked pathogenesis, and an amalgamation of qualitative and quantitative defects instigated by GATA2 mutations underlies the complex phenotypes of GATA-2-dependent pathologies.


Asunto(s)
Factor de Transcripción GATA2/genética , Leucemia Mieloide Aguda/genética , Mutación/genética , Animales , Diferenciación Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Regulación de la Expresión Génica/genética , Haploinsuficiencia/genética , Hematopoyesis/genética , Humanos , Ratones , Síndromes Mielodisplásicos/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Células Madre/metabolismo , Dedos de Zinc/genética
7.
Ophthalmic Physiol Opt ; 40(2): 88-116, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32017191

RESUMEN

PURPOSE: Cones are at great risk in a wide variety of retinal diseases, especially when there is a harsh microenvironment and retinal pigment epithelium is damaged. We provide established and new methods for assessing cones and retinal pigment epithelium, together with new results. We investigated conditions under which cones can be imaged and could guide light, despite the proximity of less than ideal retinal pigment epithelium. RECENT FINDINGS: We used a variety of imaging methods to detect and localise damage to the retinal pigment epithelium. As age-related macular degeneration is a particularly widespread disease, we imaged clinical hallmarks: drusen and hyperpigmentation. Using near infrared light provided improved imaging of the deeper fundus layers. We compared confocal and multiply scattered light images, using both the variation of detection apertures and polarisation analysis. We used optical coherence tomography to examine distances between structures and thickness of retinal layers, as well as identifying damage to the retinal pigment epithelium. We counted cones using adaptive optics scanning laser ophthalmoscopy. We compared the results of five subjects with geographic atrophy to data from a previous normative ageing study. Using near infrared imaging and layer analysis of optical coherence tomography, the widespread aspect of drusen became evident. Both multiply scattered light imaging and analysis of the volume in the retinal pigment epithelial layer from the optical coherence tomography were effective in localising drusen and hyperpigmentation beneath the photoreceptors. Cone photoreceptors in normal older eyes were shorter than in younger eyes. Cone photoreceptors survived in regions of atrophy, but with greatly reduced and highly variable density. Regular arrays of cones were found in some locations, despite abnormal retinal pigment epithelium. For some subjects, the cone density was significantly greater than normative values in some retinal locations outside the atrophy. SUMMARY: The survival of cones within atrophy is remarkable. The unusually dense packing of cones at some retinal locations outside the atrophy indicates more fluidity in cone distribution than typically thought. Together these findings suggest strategies for therapy that includes preserving cones.


Asunto(s)
Envejecimiento , Degeneración Macular/diagnóstico , Óptica y Fotónica , Epitelio Pigmentado de la Retina/patología , Tomografía de Coherencia Óptica/métodos , Agudeza Visual , Humanos , Oftalmoscopía/métodos , Células Fotorreceptoras Retinianas Conos/patología
8.
Blood ; 130(Suppl_1): 7, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-31940664

RESUMEN

DISCLOSURES: No relevant conflicts of interest to declare.

9.
Blood ; 129(3): 358-370, 2017 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-27815262

RESUMEN

Somatic mutations in TP53 and NRAS are associated with transformation of human chronic myeloid diseases to acute myeloid leukemia (AML). Here, we report that concurrent RAS pathway and TP53 mutations are identified in a subset of AML patients and confer an inferior overall survival. To further investigate the genetic interaction between p53 loss and endogenous NrasG12D/+ in AML, we generated conditional NrasG12D/+p53-/- mice. Consistent with the clinical data, recipient mice transplanted with NrasG12D/+p53-/- bone marrow cells rapidly develop a highly penetrant AML. We find that p53-/- cooperates with NrasG12D/+ to promote increased quiescence in megakaryocyte-erythroid progenitors (MEPs). NrasG12D/+p53-/- MEPs are transformed to self-renewing AML-initiating cells and are capable of inducing AML in serially transplanted recipients. RNA sequencing analysis revealed that transformed MEPs gain a partial hematopoietic stem cell signature and largely retain an MEP signature. Their distinct transcriptomes suggests a potential regulation by p53 loss. In addition, we show that during AML development, transformed MEPs acquire overexpression of oncogenic Nras, leading to hyperactivation of ERK1/2 signaling. Our results demonstrate that p53-/- synergizes with enhanced oncogenic Nras signaling to transform MEPs and drive AML development. This model may serve as a platform to test candidate therapeutics in this aggressive subset of AML.


Asunto(s)
Transformación Celular Neoplásica/genética , GTP Fosfohidrolasas/genética , Leucemia Mieloide Aguda/patología , Células Progenitoras de Megacariocitos y Eritrocitos/patología , Proteínas de la Membrana/genética , Proteína p53 Supresora de Tumor/genética , Animales , Trasplante de Médula Ósea , Humanos , Leucemia Mieloide Aguda/etiología , Leucemia Mieloide Aguda/genética , Sistema de Señalización de MAP Quinasas , Ratones , Mutación , Transducción de Señal , Proteína p53 Supresora de Tumor/deficiencia
10.
Mol Cell ; 36(6): 984-95, 2009 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-20064464

RESUMEN

GATA factors establish transcriptional networks that control fundamental developmental processes. Whereas the regulator of hematopoiesis GATA-1 is subject to multiple posttranslational modifications, how these modifications influence GATA-1 function at endogenous loci is unknown. We demonstrate that sumoylation of GATA-1 K137 promotes transcriptional activation only at target genes requiring the coregulator Friend of GATA-1 (FOG-1). A mutation of GATA-1 V205G that disrupts FOG-1 binding and K137 mutations yielded similar phenotypes, although sumoylation was FOG-1 independent, and FOG-1 binding did not require sumoylation. Both mutations dysregulated GATA-1 chromatin occupancy at select sites, FOG-1-dependent gene expression, and were rescued by tethering SUMO-1. While FOG-1- and SUMO-1-dependent genes migrated away from the nuclear periphery upon erythroid maturation, FOG-1- and SUMO-1-independent genes persisted at the periphery. These results illustrate a mechanism that controls trans-acting factor function in a locus-specific manner, and differentially regulated members of the target gene ensemble reside in distinct subnuclear compartments.


Asunto(s)
Factor de Transcripción GATA1/metabolismo , Hematopoyesis/fisiología , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Cromatina/genética , Cromatina/metabolismo , Factor de Transcripción GATA1/genética , Regulación de la Expresión Génica , Ratones , Mutación , Proteínas Nucleares/genética , Unión Proteica , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Factores de Transcripción/genética , Transcripción Genética
11.
Proc Natl Acad Sci U S A ; 111(43): 15550-5, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25313065

RESUMEN

Autism spectrum disorder (ASD), characterized by both impaired communication and social interaction, and by stereotypic behavior, affects about 1 in 68, predominantly males. The medico-economic burdens of ASD are enormous, and no recognized treatment targets the core features of ASD. In a placebo-controlled, double-blind, randomized trial, young men (aged 13-27) with moderate to severe ASD received the phytochemical sulforaphane (n = 29)--derived from broccoli sprout extracts--or indistinguishable placebo (n = 15). The effects on behavior of daily oral doses of sulforaphane (50-150 µmol) for 18 wk, followed by 4 wk without treatment, were quantified by three widely accepted behavioral measures completed by parents/caregivers and physicians: the Aberrant Behavior Checklist (ABC), Social Responsiveness Scale (SRS), and Clinical Global Impression Improvement Scale (CGI-I). Initial scores for ABC and SRS were closely matched for participants assigned to placebo and sulforaphane. After 18 wk, participants receiving placebo experienced minimal change (<3.3%), whereas those receiving sulforaphane showed substantial declines (improvement of behavior): 34% for ABC (P < 0.001, comparing treatments) and 17% for SRS scores (P = 0.017). On CGI-I, a significantly greater number of participants receiving sulforaphane had improvement in social interaction, abnormal behavior, and verbal communication (P = 0.015-0.007). Upon discontinuation of sulforaphane, total scores on all scales rose toward pretreatment levels. Dietary sulforaphane, of recognized low toxicity, was selected for its capacity to reverse abnormalities that have been associated with ASD, including oxidative stress and lower antioxidant capacity, depressed glutathione synthesis, reduced mitochondrial function and oxidative phosphorylation, increased lipid peroxidation, and neuroinflammmation.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/tratamiento farmacológico , Isotiocianatos/uso terapéutico , Adolescente , Adulto , Humanos , Isotiocianatos/efectos adversos , Masculino , Placebos , Conducta Social , Sulfóxidos , Resultado del Tratamiento , Adulto Joven
12.
Proc Natl Acad Sci U S A ; 111(12): E1091-100, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24616499

RESUMEN

The unremitting demand to replenish differentiated cells in tissues requires efficient mechanisms to generate and regulate stem and progenitor cells. Although master regulatory transcription factors, including GATA binding protein-2 (GATA-2), have crucial roles in these mechanisms, how such factors are controlled in developmentally dynamic systems is poorly understood. Previously, we described five dispersed Gata2 locus sequences, termed the -77, -3.9, -2.8, -1.8, and +9.5 GATA switch sites, which contain evolutionarily conserved GATA motifs occupied by GATA-2 and GATA-1 in hematopoietic precursors and erythroid cells, respectively. Despite common attributes of transcriptional enhancers, targeted deletions of the -2.8, -1.8, and +9.5 sites revealed distinct and unpredictable contributions to Gata2 expression and hematopoiesis. Herein, we describe the targeted deletion of the -3.9 site and mechanistically compare the -3.9 site with other GATA switch sites. The -3.9(-/-) mice were viable and exhibited normal Gata2 expression and steady-state hematopoiesis in the embryo and adult. We established a Gata2 repression/reactivation assay, which revealed unique +9.5 site activity to mediate GATA factor-dependent chromatin structural transitions. Loss-of-function analyses provided evidence for a mechanism in which a mediator of long-range transcriptional control [LIM domain binding 1 (LDB1)] and a chromatin remodeler [Brahma related gene 1 (BRG1)] synergize through the +9.5 site, conferring expression of GATA-2, which is known to promote the genesis and survival of hematopoietic stem cells.


Asunto(s)
Factor de Transcripción GATA2/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Células Madre/citología , Animales , Secuencia de Bases , Diferenciación Celular/genética , Células Cultivadas , Elementos de Facilitación Genéticos , Hematopoyesis , Humanos , Intrones , Ratones , Datos de Secuencia Molecular , Homología de Secuencia de Ácido Nucleico , Células Madre/metabolismo
13.
Instr Course Lect ; 65: 243-65, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27049194

RESUMEN

Primary total knee arthroplasty (TKA) for the treatment of knee arthritis has substantially increased over the past decade. Because of its success, the indications for primary TKA have expanded to include younger patients who are more active, elderly patients who have multiple comorbidities, and patients who have more complex issues, such as posttraumatic arthritis and severe deformity. TKA also has been used to salvage failed unicondylar arthroplasty and osteotomies about the knee. Exposure may be challenging and outcomes may not be as successful in patients with soft-tissue contractures, such as a stiff knee, who undergo TKA. Bone graft or augments may be required to correct deformity and attain proper knee alignment in patients who have a substantial varus or valgus deformity. TKA is somewhat challenging in patients who have deformity, bone loss, contracture, or multiple comorbidities, or have had prior surgery; therefore, it is necessary for surgeons to be aware of some general principles that may help minimize complications and improve outcomes.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Contractura/cirugía , Complicaciones Intraoperatorias/prevención & control , Deformidades Adquiridas de la Articulación/cirugía , Osteoartritis de la Rodilla/cirugía , Complicaciones Posoperatorias/prevención & control , Artroplastia de Reemplazo de Rodilla/efectos adversos , Artroplastia de Reemplazo de Rodilla/métodos , Trasplante Óseo/métodos , Humanos , Articulación de la Rodilla/cirugía , Prótesis de la Rodilla , Ajuste de Riesgo , Cirugía Asistida por Computador/métodos
14.
Blood ; 121(19): 3830-7, S1-7, 2013 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-23502222

RESUMEN

Previous reports of GATA2 mutations have focused on the coding region of the gene or full gene deletions. We recently identified 2 patients with novel insertion/deletion mutations predicted to result in mRNA nonsense-mediated decay, suggesting haploinsufficiency as the mechanism of GATA2 deficient disease. We therefore screened patients without identified exonic lesions for mutations within conserved noncoding and intronic regions. We discovered 1 patient with an intronic deletion mutation, 4 patients with point mutations within a conserved intronic element, and 3 patients with reduced or absent transcription from 1 allele. All mutations affected GATA2 transcription. Full-length cDNA analysis provided evidence for decreased expression of the mutant alleles. The intronic deletion and point mutations considerably reduced the enhancer activity of the intron 5 enhancer. Analysis of 512 immune system genes revealed similar expression profiles in all clinically affected patients and reduced GATA2 transcript levels. These mutations strongly support the haploinsufficient nature of GATA2 deficiency and identify transcriptional mechanisms and targets that lead to MonoMAC syndrome.


Asunto(s)
Factor de Transcripción GATA2/genética , Haploinsuficiencia/genética , Leucopenia/genética , Mutación/fisiología , Infección por Mycobacterium avium-intracellulare/genética , Adolescente , Adulto , Anciano , Secuencia de Bases , Niño , Preescolar , Secuencia Conservada/genética , Femenino , Humanos , Lactante , Intrones/genética , Células K562 , Leucopenia/sangre , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Monocitos/patología , Infección por Mycobacterium avium-intracellulare/sangre , Degradación de ARNm Mediada por Codón sin Sentido/genética , Síndrome , Adulto Joven
15.
J Arthroplasty ; 30(3): 374-8, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25453625

RESUMEN

The purpose of this study was to evaluate the longitudinal variations in SF-36 physical and mental scores and the effects of demographics and comorbidities after TKA. This prospective study evaluated 108 men and 173 women who had a mean age of 66 years. All patients were followed for a minimum of five years and SF-36 physical and mental component scores were evaluated longitudinally. Physical scores steadily increased during the first year whereas mental component scores initially decreased in the first six weeks and then subsequently increased and both plateaued at one year. Demographic and social factors had a greater effect on physical component scores and comorbidities were more predictive of poor mental scores. Surgeons should counsel their patients that they will likely perceive the full benefit of TKA by one year, but in the first months may perceive worse outcomes.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Osteoartritis de la Rodilla/cirugía , Adulto , Anciano , Anciano de 80 o más Años , Artritis Reumatoide/cirugía , Comorbilidad , Bases de Datos Factuales , Femenino , Encuestas Epidemiológicas , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Osteonecrosis/cirugía , Satisfacción del Paciente , Estudios Prospectivos
16.
Curr Opin Hematol ; 21(3): 155-64, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24722192

RESUMEN

PURPOSE OF REVIEW: Erythropoiesis, in which hematopoietic stem cells (HSCs) generate lineage-committed progenitors that mature into erythrocytes, is regulated by numerous chromatin modifying and remodeling proteins. We will focus on how epigenetic and genetic mechanisms mesh to establish the erythroid transcriptome and how studying erythropoiesis can yield genomic principles. RECENT FINDINGS: Trans-acting factor binding to small DNA motifs (cis-elements) underlies regulatory complex assembly at specific chromatin sites, and therefore unique transcriptomes. As cis-elements are often very small, thousands or millions of copies of a given element reside in a genome. Chromatin restricts factor access in a context-dependent manner, and cis-element-binding factors recruit chromatin regulators that mediate functional outputs. Technologies to map chromatin attributes of loci in vivo, to edit genomes and to sequence whole genomes have been transformative in discovering critical cis-elements linked to human disease. SUMMARY: Cis-elements mediate chromatin-targeting specificity, and chromatin regulators dictate cis-element accessibility/function, illustrating an amalgamation of genetic and epigenetic mechanisms. Cis-elements often function ectopically when studied outside of their endogenous loci, and complex strategies to identify nonredundant cis-elements require further development. Facile genome-editing technologies provide a new approach to address this problem. Extending genetic analyses beyond exons and promoters will yield a rich pipeline of cis-element alterations with importance for red cell biology and disease.


Asunto(s)
Epigenómica , Eritrocitos/fisiología , Factores de Transcripción/fisiología , Perfilación de la Expresión Génica , Hematopoyesis/fisiología , Humanos
17.
Hum Mol Genet ; 21(19): 4237-52, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22752410

RESUMEN

Various small molecule pharmacologic agents with different known functions produce similar outcomes in diverse Mendelian and complex disorders, suggesting that they may induce common cellular effects. These molecules include histone deacetylase inhibitors, 4-phenylbutyrate (4PBA) and trichostatin A, and two small molecules without direct histone deacetylase inhibitor activity, hydroxyurea (HU) and sulforaphane. In some cases, the therapeutic effects of histone deacetylase inhibitors have been attributed to an increase in expression of genes related to the disease-causing gene. However, here we show that the pharmacological induction of mitochondrial biogenesis was necessary for the potentially therapeutic effects of 4PBA or HU in two distinct disease models, X-linked adrenoleukodystrophy and sickle cell disease. We hypothesized that a common cellular response to these four molecules is induction of mitochondrial biogenesis and peroxisome proliferation and activation of the stress proteome, or adaptive cell survival response. Treatment of human fibroblasts with these four agents induced mitochondrial and peroxisomal biogenesis as monitored by flow cytometry, immunofluorescence and/or western analyses. In treated normal human fibroblasts, all four agents induced the adaptive cell survival response: heat shock, unfolded protein, autophagic and antioxidant responses and the c-jun N-terminal kinase pathway, at the transcriptional and translational levels. Thus, activation of the evolutionarily conserved stress proteome and mitochondrial biogenesis may be a common cellular response to such small molecule therapy and a common basis of therapeutic action in various diseases. Modulation of this novel therapeutic target could broaden the range of treatable diseases without directly targeting the causative genetic abnormalities.


Asunto(s)
Adrenoleucodistrofia/tratamiento farmacológico , Quimioterapia , Ácidos Hidroxámicos/uso terapéutico , Hidroxiurea/uso terapéutico , Fenilbutiratos/uso terapéutico , Proteoma/metabolismo , Tiocianatos/uso terapéutico , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Adrenoleucodistrofia/fisiopatología , Línea Celular , Humanos , Isotiocianatos , Recambio Mitocondrial/efectos de los fármacos , Proteoma/genética , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Sulfóxidos
18.
Nucleic Acids Res ; 40(13): 5819-31, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22492510

RESUMEN

Numerous examples exist of how disrupting the actions of physiological regulators of blood cell development yields hematologic malignancies. The master regulator of hematopoietic stem/progenitor cells GATA-2 was cloned almost 20 years ago, and elegant genetic analyses demonstrated its essential function to promote hematopoiesis. While certain GATA-2 target genes are implicated in leukemogenesis, only recently have definitive insights emerged linking GATA-2 to human hematologic pathophysiologies. These pathophysiologies include myelodysplastic syndrome, acute myeloid leukemia and an immunodeficiency syndrome with complex phenotypes including leukemia. As GATA-2 has a pivotal role in the etiology of human cancer, it is instructive to consider mechanisms underlying normal GATA factor function/regulation and how dissecting such mechanisms may reveal unique opportunities for thwarting GATA-2-dependent processes in a therapeutic context. This article highlights GATA factor mechanistic principles, with a heavy emphasis on GATA-1 and GATA-2 functions in the hematopoietic system, and new links between GATA-2 dysregulation and human pathophysiologies.


Asunto(s)
Factores de Transcripción GATA/metabolismo , Neoplasias Hematológicas/genética , Factor de Transcripción GATA2/metabolismo , Neoplasias Hematológicas/metabolismo , Humanos , Procesamiento Proteico-Postraduccional
19.
bioRxiv ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38948805

RESUMEN

The "bubblegum" acyl-CoA synthetase (ACSBG1) is a pivotal player in lipid metabolism during the development of the mouse brain, facilitating the activation of long-chain fatty acids (LCFAs) and their integration into essential lipid species crucial for brain function. Through its enzymatic activity, ACSBG1 converts LCFAs into acyl-CoA derivatives, supporting vital processes like membrane formation, myelination, and energy production. Its regulatory role significantly influences neuronal growth, synaptic plasticity, and overall brain development, highlighting its importance in maintaining lipid homeostasis and proper brain function. Originally discovered in the fruit fly brain, ACSBG1 attracted attention for its potential implication in X-linked adrenoleukodystrophy (XALD) pathogenesis. Studies using Drosophila melanogaster lacking the ACSBG1 homolog, bubblegum, revealed adult neurodegeneration with elevated levels of very long-chain fatty acids (VLCFA). To explore ACSBG1's role in fatty acid (FA) metabolism and its relevance to XALD, we created an ACSBG1 knockout (Acsbg1-/-) mouse model and examined its impact on lipid metabolism during mouse brain development. Phenotypically, Acsbg1-/- mice resembled wild type (w.t.) mice. Despite its primary expression in tissues affected by XALD, brain, adrenal gland and testis, ACSBG1 depletion did not significantly reduce total ACS enzyme activity in these tissues when using LCFA or VLCFA as substrates. However, analysis unveiled intriguing developmental and compositional changes in FA levels associated with ACSBG1 deficiency. In the adult mouse brain, ACSBG1 expression peaked in the cerebellum, with lower levels observed in other brain regions. Developmentally, ACSBG1 expression in the cerebellum was initially low during the first week of life but increased dramatically thereafter. Cerebellar FA levels were assessed in both w.t. and Acsbg1-/- mouse brains throughout development, revealing notable differences. While saturated VLCFA levels were typically high in XALD tissues and in fruit flies lacking ACSBG1, cerebella from Acsbg1-/- mice displayed lower saturated VLCFA levels, especially after about 8 days of age. Additionally, monounsaturated ω9 FA levels exhibited a similar trend as saturated VLCFA, while ω3 polyunsaturated FA levels were elevated in Acsbg1-/- mice. Further analysis of specific FA levels provided additional insights into potential roles for ACSBG1. Notably, the decreased VLCFA levels in Acsbg1-/- mice primarily stemmed from changes in C24:0 and C26:0, while reduced ω9 FA levels were mainly observed in C18:1 and C24:1. ACSBG1 depletion had minimal effects on saturated long-chain FA or ω6 polyunsaturated FA levels but led to significant increases in specific ω3 FA, such as C20:5 and C22:5. Moreover, the impact of ACSBG1 deficiency on the developmental expression of several cerebellar FA metabolism enzymes, including those required for synthesis of ω3 polyunsaturated FA, was assessed; these FA can potentially be converted into bioactive signaling molecules like eicosanoids and docosanoids. In conclusion, despite compelling circumstantial evidence, it is unlikely that ACSBG1 directly contributes to the pathology of XALD. Instead, the effects of ACSBG1 knockout on processes regulated by eicosanoids and/or docosanoids should be further investigated.

20.
Blood ; 117(18): 4769-72, 2011 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-21398579

RESUMEN

Master transcriptional regulators of development often function through dispersed cis elements at endogenous target genes. While cis-elements are routinely studied in transfection and transgenic reporter assays, it is challenging to ascertain how they function in vivo. To address this problem in the context of the locus encoding the critical hematopoietic transcription factor Gata2, we engineered mice lacking a cluster of GATA motifs 2.8 kb upstream of the Gata2 transcriptional start site. We demonstrate that the -2.8 kb site confers maximal Gata2 expression in hematopoietic stem cells and specific hematopoietic progenitors. By contrast to our previous demonstration that a palindromic GATA motif at the neighboring -1.8 kb site maintains Gata2 repression in terminally differentiating erythroid cells, the -2.8 kb site was not required to initiate or maintain repression. These analyses reveal qualitatively distinct functions of 2 GATA motif-containing regions in vivo.


Asunto(s)
Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Hematopoyesis/genética , Hematopoyesis/fisiología , Secuencias de Aminoácidos , Animales , Eritropoyesis/genética , Eritropoyesis/fisiología , Factor de Transcripción GATA2/química , Expresión Génica , Técnicas de Sustitución del Gen , Genes de Cambio , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Ratones , Ratones Transgénicos , Modelos Biológicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sitio de Iniciación de la Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA