Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Eur Radiol ; 32(2): 1308-1319, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34410458

RESUMEN

OBJECTIVES: To assess whether MR fingerprinting (MRF)-based relaxation properties exhibit cross-sectional and prospective correlations with patient outcome and compare the results with those from DTI. METHODS: Clinical imaging, MRF, and DTI were acquired in patients (24 ± 10 days after injury (timepoint 1) and 90 ± 17 days after injury (timepoint 2)) and once in controls. Patient outcome was assessed with global functioning, symptom profile, and neuropsychological testing. ADC and fractional anisotropy (FA) from DTI and T1 and T2 from MRF were compared in 12 gray and white matter regions with Mann-Whitney tests. Bivariate associations between MR measures and outcome were assessed using the Spearman correlation and logistic regression. RESULTS: Data from 22 patients (38 ± 12 years; 17 women) and 18 controls (32 ± 8 years; 12 women) were analyzed. Fourteen patients (37 ± 12 years; 11 women) returned for timepoint 2, while two patients provided only timepoint 2 clinical outcome data. At timepoint 1, there were no differences between patients and controls in T1, T2, and ADC, while FA was lower in mTBI frontal white matter. T1 at timepoint 1 and the change in T1 exhibited more (n = 18) moderate to strong correlations (|r|= 0.6-0.85) with clinical outcome at timepoint 2 than T2 (n = 3), FA (n = 7), and ADC (n = 2). High T1 at timepoint 1, and serially increasing T1, accounted for five of the six MR measures with the highest utility for identification of non-recovered patients at timepoint 2 (AUC > 0.80). CONCLUSION: T1 derived from MRF was found to have higher utility than T2, FA, and ADC for predicting 3-month outcome after mTBI. KEY POINTS: • In a region-of-interest approach, FA, ADC, and T1 and T2 all showed limited utility in differentiating patients from controls at an average of 24 and 90 days post-mild traumatic brain injury. • T1 at 24 days, and the serial change in T1, revealed more and stronger predictive correlations with clinical outcome at 90 days than did T2, ADC, or FA. • T1 showed better prospective identification of non-recovered patients at 90 days than ADC, T2, and FA.


Asunto(s)
Conmoción Encefálica , Encéfalo , Conmoción Encefálica/diagnóstico por imagen , Estudios Transversales , Femenino , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Estudios Prospectivos
2.
NMR Biomed ; 34(8): e4538, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33956374

RESUMEN

The hippocampus is one of the most challenging brain regions for proton MR spectroscopy (MRS) applications. Moreover, quantification of J-coupled species such as myo-inositol (m-Ins) and glutamate + glutamine (Glx) is affected by the presence of macromolecular background. While long echo time (TE) MRS eliminates the macromolecules, it also decreases the m-Ins and Glx signal and, as a result, these metabolites are studied mainly with short TE. Here, we investigate the feasibility of reproducibly measuring their concentrations at a long TE of 120 ms, using a semi-adiabatic localization by adiabatic selective refocusing (sLASER) sequence, as this sequence was recently recommended as a standard for clinical MRS. Gradient offset-independent adiabatic refocusing pulses were implemented, and an optimal long TE for the detection of m-Ins and Glx was determined using the T2 relaxation times of macromolecules. Metabolite concentrations and their coefficients of variation (CVs) were obtained for a 3.4-mL voxel centered on the left hippocampus on 3-T MR systems at two different sites with three healthy subjects (aged 32.5 ± 10.2 years [mean ± standard deviation]) per site, with each subject scanned over two sessions, and with each session comprising three scans. Concentrations of m-Ins, choline, creatine, Glx and N-acetyl-aspartate were 5.4 ± 1.5, 1.7 ± 0.2, 5.8 ± 0.3, 11.6 ± 1.2 and 5.9 ± 0.4 mM (mean ± standard deviation), respectively. Their respective mean within-session CVs were 14.5% ± 5.9%, 6.5% ± 5.3%, 6.0% ± 3.4%, 10.6% ± 6.2% and 3.5% ± 1.4%, and their mean within-subject CVs were 17.8% ± 18.2%, 7.5% ± 6.3%, 7.4% ± 6.4%, 12.4% ± 5.3% and 4.8% ± 3.0%. The between-subject CVs were 25.0%, 12.3%, 5.3%, 10.7% and 6.4%, respectively. Hippocampal long-TE sLASER single voxel spectroscopy can provide macromolecule-independent assessment of all major metabolites including Glx and m-Ins.


Asunto(s)
Algoritmos , Hipocampo/diagnóstico por imagen , Espectroscopía de Resonancia Magnética , Adulto , Simulación por Computador , Femenino , Humanos , Masculino , Metaboloma , Factores de Tiempo
3.
Magn Reson Med ; 83(1): 22-44, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31393032

RESUMEN

PURPOSE: Unlike conventional MR spectroscopy (MRS), which only measures metabolite concentrations, multiparametric MRS also quantifies their longitudinal (T1 ) and transverse (T2 ) relaxation times, as well as the radiofrequency transmitter inhomogeneity (B1+ ). To test whether knowledge of these additional parameters can improve the clinical utility of brain MRS, we compare the conventional and multiparametric approaches in terms of expected classification accuracy in differentiating controls from patients with neurological disorders. THEORY AND METHODS: A literature review was conducted to compile metabolic concentrations and relaxation times in a wide range of neuropathologies and regions of interest. Simulations were performed to construct receiver operating characteristic curves and compute the associated areas (area under the curve) to examine the sensitivity and specificity of MRS for detecting each pathology in each region. Classification accuracy was assessed using metabolite concentrations corrected using population-averages for T1 , T2 , and B1+ (conventional MRS); using metabolite concentrations corrected using per-subject values (multiparametric MRS); and using an optimal linear multiparametric estimator comprised of the metabolites' concentrations and relaxation constants (multiparametric MRS). Additional simulations were conducted to find the minimal intra-subject precision needed for each parameter. RESULTS: Compared with conventional MRS, multiparametric approaches yielded area under the curve improvements for almost all neuropathologies and regions of interest. The median area under the curve increased by 0.14 over the entire dataset, and by 0.24 over the 10 instances with the largest individual increases. CONCLUSIONS: Multiparametric MRS can substantially improve the clinical utility of MRS in diagnosing and assessing brain pathology, motivating the design and use of novel multiparametric sequences.


Asunto(s)
Espectroscopía de Resonancia Magnética , Procesamiento de Señales Asistido por Computador , Algoritmos , Área Bajo la Curva , Ácido Aspártico/análogos & derivados , Ácido Aspártico/farmacología , Biomarcadores/metabolismo , Simulación por Computador , Diagnóstico por Computador/métodos , Humanos , Modelos Lineales , Método de Montecarlo , Enfermedades del Sistema Nervioso/diagnóstico , Neuronas/metabolismo , Ondas de Radio , Reproducibilidad de los Resultados
4.
J Magn Reson Imaging ; 50(5): 1424-1432, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30868703

RESUMEN

BACKGROUND: 3D brain proton MR spectroscopic imaging (1 H MRSI) facilitates simultaneous metabolic profiling of multiple loci, at higher, sub-1 cm3 , spatial resolution than single-voxel 1 H MRS with the ability to separate tissue-type partial volume contribution(s). PURPOSE: To determine if: 1) white matter (WM) damage in mild traumatic brain injury (mTBI) is homogeneously diffuse, or if specific regions are more affected; 2) partial-volume-corrected, structure-specific 1 H MRSI voxel averaging is sensitive to regional WM metabolic abnormalities. STUDY TYPE: Retrospective cross-sectional cohort study. POPULATION: Twenty-seven subjects: 15 symptomatic mTBI patients, 12 matched controls. FIELD STRENGTH/SEQUENCE: 3T using 3D 1 H MRSI over a 360-cm3 volume of interest (VOI) centered over the corpus callosum, partitioned into 480 voxels, each 0.75 cm3 . ASSESSMENT: N-acetyl-aspartate (NAA), creatine, choline, and myo-inositol concentrations estimated in predominantly WM regions: body, genu, and splenium of the corpus callosum, corona radiata, frontal, and occipital WM. STATISTICAL TESTS: Analysis of covariance (ANCOVA) to compare patients with controls in terms of regional concentrations. The effect sizes (Cohen's d) of the mean differences were compared across regions and with previously published global data obtained with linear regression of the WM over the entire VOI in the same dataset. RESULTS: Despite patients' global VOI WM NAA being significantly lower than the controls', no regional differences were observed for any metabolite. Regional NAA comparisons, however, were all unidirectional (patients' NAA concentrations < controls') within a narrow range: 0.3 ≤ Cohen's d ≤ 0.6. DATA CONCLUSION: Since the patient group was symptomatic and exhibiting global WM NAA deficits, these findings suggest: 1) diffuse axonal mTBI damage; that is 2) below the 1 H MRSI detection threshold in small regions. Therefore, larger, ie, more sensitive, single-voxel 1 H MRS, placed anywhere in WM regions, may be well suited for mTBI 1 H MRS studies, given that these results are confirmed in other cohorts. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019;50:1424-1432.


Asunto(s)
Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Espectroscopía de Protones por Resonancia Magnética/métodos , Sustancia Blanca/diagnóstico por imagen , Adolescente , Adulto , Estudios de Casos y Controles , Estudios Transversales , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Adulto Joven
5.
Hum Brain Mapp ; 38(8): 4047-4063, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28523763

RESUMEN

Although MRI assessment of white matter lesions is essential for the clinical management of multiple sclerosis, the processes leading to the formation of lesions and underlying their subsequent MRI appearance are incompletely understood. We used proton MR spectroscopy to study the evolution of N-acetyl-aspartate (NAA), creatine (Cr), choline (Cho), and myo-inositol (mI) in pre-lesional tissue, persistent and transient new lesions, as well as in chronic lesions, and related the results to quantitative MRI measures of T1-hypointensity and T2-volume. Within 10 patients with relapsing-remitting course, there were 180 regions-of-interest consisting of up to seven semi-annual follow-ups of normal-appearing white matter (NAWM, n = 10), pre-lesional tissue giving rise to acute lesions which resolved (n = 3) or persisted (n = 3), and of moderately (n = 9) and severely hypointense (n = 6) chronic lesions. Compared with NAWM, pre-lesional tissue had higher Cr and Cho, while compared with lesions, pre-lesional tissue had higher NAA. Resolving acute lesions showed similar NAA levels pre- and post-formation, suggesting no long-term axonal damage. In chronic lesions, there was an increase in mI, suggesting accumulating astrogliosis. Lesion volume was a better predictor of axonal health than T1-hypointensity, with lesions larger than 1.5 cm3 uniformly exhibiting very low (<4.5 millimolar) NAA concentrations. A positive correlation between longitudinal changes in Cho and in lesion volume in moderately hypointense lesions implied that lesion size is mediated by chronic inflammation. These and other results are integrated in a discussion on the steady-state metabolism of lesion evolution in multiple sclerosis, viewed in the context of conventional MRI measures. Hum Brain Mapp 38:4047-4063, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Imagen por Resonancia Magnética , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/metabolismo , Espectroscopía de Protones por Resonancia Magnética , Adulto , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Colina/metabolismo , Creatina/metabolismo , Estudios Transversales , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Inositol/metabolismo , Estudios Longitudinales , Masculino , Tamaño de los Órganos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/metabolismo , Adulto Joven
6.
NMR Biomed ; 30(7)2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28272763

RESUMEN

Metabolite levels measured using magnetic resonance spectroscopy (MRS) are often expressed as ratios rather than absolute concentrations. However, the inter-subject variability of the denominator metabolite can introduce uncertainty into a metabolite ratio. In a clinical setting, there are no guidelines on whether ratios or absolute quantification should be used for a more accurate classification of normal versus abnormal results based on their statistical properties. In a research setting, the choice of one over the other can have significant implications on sample size, which must be factored in at the study design stage. Herein, we derive the probability distribution function for the ratio of two normally distributed random variables, and present analytical expressions for the comparison of ratios with absolute quantification in terms of both sample size and area under the receiver operator characteristic curve. The two approaches are compared for typical metabolite values found in the literature, and their respective merits are illustrated using previously acquired clinical MRS data in two pathologies: mild traumatic brain injury and multiple sclerosis. Our analysis shows that the decision between ratios and absolute quantification is non-trivial: in some cases, ratios might offer a reduction in sample size, whereas, in others, absolute quantification might prove more desirable for individual (i.e. clinical) use. The decision is straightforward and exact guidelines are provided in the text, given that population means and standard deviations of numerator and denominator can be reliably estimated.


Asunto(s)
Algoritmos , Ácido Aspártico/análogos & derivados , Lesiones Encefálicas/metabolismo , Encéfalo/metabolismo , Colina/metabolismo , Interpretación Estadística de Datos , Espectroscopía de Resonancia Magnética/métodos , Adulto , Ácido Aspártico/metabolismo , Biomarcadores/metabolismo , Femenino , Humanos , Masculino , Análisis de Flujos Metabólicos/métodos , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
7.
NMR Biomed ; 30(10)2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28678429

RESUMEN

Total N-acetyl-aspartate + N-acetyl-aspartate-glutamate (NAA), total creatine (Cr) and total choline (Cho) proton MRS (1 H-MRS) signals are often used as surrogate markers in diffuse neurological pathologies, but spatial coverage of this methodology is limited to 1%-65% of the brain. Here we wish to demonstrate that non-localized, whole-head (WH) 1 H-MRS captures just the brain's contribution to the Cho and Cr signals, ignoring all other compartments. Towards this end, 27 young healthy adults (18 men, 9 women), 29.9 ± 8.5 years old, were recruited and underwent T1 -weighted MRI for tissue segmentation, non-localizing, approximately 3 min WH 1 H-MRS (TE /TR /TI  = 5/10/940 ms) and 30 min 1 H-MR spectroscopic imaging (MRSI) (TE /TR  = 35/2100 ms) in a 360 cm3 volume of interest (VOI) at the brain's center. The VOI absolute NAA, Cr and Cho concentrations, 7.7 ± 0.5, 5.5 ± 0.4 and 1.3 ± 0.2 mM, were all within 10% of the WH: 8.6 ± 1.1, 6.0 ± 1.0 and 1.3 ± 0.2 mM. The mean NAA/Cr and NAA/Cho ratios in the WH were only slightly higher than the "brain-only" VOI: 1.5 versus 1.4 (7%) and 6.6 versus 5.9 (11%); Cho/Cr were not different. The brain/WH volume ratio was 0.31 ± 0.03 (brain ≈ 30% of WH volume). Air-tissue susceptibility-driven local magnetic field changes going from the brain outwards showed sharp gradients of more than 100 Hz/cm (1 ppm/cm), explaining the skull's Cr and Cho signal losses through resonance shifts, line broadening and destructive interference. The similarity of non-localized WH and localized VOI NAA, Cr and Cho concentrations and their ratios suggests that their signals originate predominantly from the brain. Therefore, the fast, comprehensive WH-1 H-MRS method may facilitate quantification of these metabolites, which are common surrogate markers in neurological disorders.


Asunto(s)
Encéfalo/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Protones , Adolescente , Adulto , Ácido Aspártico/análogos & derivados , Colina/metabolismo , Creatina/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
8.
Radiology ; 279(3): 693-707, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27183405

RESUMEN

Mild traumatic brain injury (mTBI), also commonly referred to as concussion, affects millions of Americans annually. Although computed tomography is the first-line imaging technique for all traumatic brain injury, it is incapable of providing long-term prognostic information in mTBI. In the past decade, the amount of research related to magnetic resonance (MR) imaging of mTBI has grown exponentially, partly due to development of novel analytical methods, which are applied to a variety of MR techniques. Here, evidence of subtle brain changes in mTBI as revealed by these techniques, which are not demonstrable by conventional imaging, will be reviewed. These changes can be considered in three main categories of brain structure, function, and metabolism. Macrostructural and microstructural changes have been revealed with three-dimensional MR imaging, susceptibility-weighted imaging, diffusion-weighted imaging, and higher order diffusion imaging. Functional abnormalities have been described with both task-mediated and resting-state blood oxygen level-dependent functional MR imaging. Metabolic changes suggesting neuronal injury have been demonstrated with MR spectroscopy. These findings improve understanding of the true impact of mTBI and its pathogenesis. Further investigation may eventually lead to improved diagnosis, prognosis, and management of this common and costly condition. (©) RSNA, 2016.


Asunto(s)
Lesiones Encefálicas/diagnóstico por imagen , Imagen por Resonancia Magnética , Adulto , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Química Encefálica , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Hemorragias Intracraneales/diagnóstico por imagen , Hierro/análisis , Campos Magnéticos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Trastornos de la Memoria/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos
9.
Pediatr Blood Cancer ; 63(2): 228-33, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26376459

RESUMEN

BACKGROUND: Erwinia asparaginase is antigenically distinct from E.coli-derived asparaginase and may be used after E.coli-derived asparaginase hypersensitivity. In a single-arm, multicenter study, we evaluated nadir serum asparaginase activity (NSAA) and toxicity with intravenously administered asparaginase Erwinia chrysanthemi (IV-Erwinia) in children and adolescents with acute lymphoblastic leukemia (ALL) or lymphoblastic lymphoma with hypersensitivity to E.coli-derived asparaginase. PATIENTS AND METHODS: Between 2012 and 2013, 30 patients (age 1-17 years) enrolled from 10 centers. Patients received IV-Erwinia, 25,000 IU/m(2)/dose on Monday/Wednesday/Friday, for 2 consecutive-weeks (6 doses = 1 cycle) for each dose of pegaspargase remaining in the original treatment plan. The primary objective was to determine the proportion of patients achieving NSAA ≥ 0.1 IU/ml 48 hr after dose 5 in Cycle 1. Secondary objectives included determining the proportion achieving NSAA ≥ 0.1 IU/ml 72 hr after Cycle 1 dose 6, and the frequency of asparaginase-related toxicities. RESULTS: Twenty-six patients completed Cycle 1; 24 were evaluable for NSAA assessment. In Cycle 1, NSAA ≥ 0.10 IU/ml was detected in 83% of patients (95% confidence interval [CI], 63-95%) 48 hr post-dose 5 (mean ± SD; 0.32 IU/ml ± 0.23), and in 43% (95% CI, 22-66%) 72 hr post-dose 6 (mean ± SD; 0.089 IU/ml ± 0.072). For all 30 patients over all cycles, hypersensitivity/infusional reactions with IV-Erwinia occurred in 37%, pancreatitis 7%, and thrombosis 3%. CONCLUSIONS: IV-Erwinia administration in children/adolescents appeared feasible and tolerable. A therapeutically-effective NSAA (≥ 0.10 IU/ml) was achieved in most patients at 48 hr, but in fewer than half 72 hr post-dosing, suggesting that monitoring NSAA levels and/or every 48 hr dosing may be indicated.


Asunto(s)
Antineoplásicos/uso terapéutico , Asparaginasa/sangre , Asparaginasa/uso terapéutico , Dickeya chrysanthemi/enzimología , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Adolescente , Niño , Preescolar , Hipersensibilidad a las Drogas , Escherichia coli , Femenino , Humanos , Lactante , Masculino
10.
Neuroimage ; 118: 334-43, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26037050

RESUMEN

Diffusion MRI combined with biophysical modeling allows for the description of a white matter (WM) fiber bundle in terms of compartment specific white matter tract integrity (WMTI) metrics, which include intra-axonal diffusivity (Daxon), extra-axonal axial diffusivity (De||), extra-axonal radial diffusivity (De┴), axonal water fraction (AWF), and tortuosity (α) of extra-axonal space. Here we derive these parameters from diffusion kurtosis imaging to examine their relationship to concentrations of global WM N-acetyl-aspartate (NAA), creatine (Cr), choline (Cho) and myo-Inositol (mI), as measured with proton MR spectroscopy ((1)H-MRS), in a cohort of 25 patients with mild traumatic brain injury (MTBI). We found statistically significant (p<0.05) positive correlations between NAA and Daxon, AWF, α, and fractional anisotropy; negative correlations between NAA and De,┴ and the overall radial diffusivity (D┴). These correlations were supported by similar findings in regional analysis of the genu and splenium of the corpus callosum. Furthermore, a positive correlation in global WM was noted between Daxon and Cr, as well as a positive correlation between De|| and Cho, and a positive trend between De|| and mI. The specific correlations between NAA, an endogenous probe of the neuronal intracellular space, and WMTI metrics related to the intra-axonal space, combined with the specific correlations of De|| with mI and Cho, both predominantly present extra-axonally, corroborate the overarching assumption of many advanced modeling approaches that diffusion imaging can disentangle between the intra- and extra-axonal compartments in WM fiber bundles. Our findings are also generally consistent with what is known about the pathophysiology of MTBI, which appears to involve both intra-axonal injury (as reflected by a positive trend between NAA and Daxon) as well as axonal shrinkage, demyelination, degeneration, and/or loss (as reflected by correlations between NAA and De┴, AWF, and α).


Asunto(s)
Ácido Aspártico/análogos & derivados , Axones/metabolismo , Lesiones Encefálicas/metabolismo , Encéfalo/metabolismo , Adulto , Ácido Aspártico/metabolismo , Axones/patología , Encéfalo/patología , Lesiones Encefálicas/patología , Colina/metabolismo , Creatina/metabolismo , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Inositol/metabolismo , Masculino , Modelos Neurológicos , Espectroscopía de Protones por Resonancia Magnética , Sustancia Blanca/metabolismo , Sustancia Blanca/patología
11.
NMR Biomed ; 27(11): 1275-84, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25196714

RESUMEN

Concentration of the neuronal marker, N-acetylaspartate (NAA), a quantitative metric for the health and density of neurons, is currently obtained by integration of the manually defined peak in whole-head proton ((1) H)-MRS. Our goal was to develop a full spectral modeling approach for the automatic estimation of the whole-brain NAA concentration (WBNAA) and to compare the performance of this approach with a manual frequency-range peak integration approach previously employed. MRI and whole-head (1) H-MRS from 18 healthy young adults were examined. Non-localized, whole-head (1) H-MRS obtained at 3 T yielded the NAA peak area through both manually defined frequency-range integration and the new, full spectral simulation. The NAA peak area was converted into an absolute amount with phantom replacement and normalized for brain volume (segmented from T1 -weighted MRI) to yield WBNAA. A paired-sample t test was used to compare the means of the WBNAA paradigms and a likelihood ratio test used to compare their coefficients of variation. While the between-subject WBNAA means were nearly identical (12.8 ± 2.5 mm for integration, 12.8 ± 1.4 mm for spectral modeling), the latter's standard deviation was significantly smaller (by ~50%, p = 0.026). The within-subject variability was 11.7% (±1.3 mm) for integration versus 7.0% (±0.8 mm) for spectral modeling, i.e., a 40% improvement. The (quantifiable) quality of the modeling approach was high, as reflected by Cramer-Rao lower bounds below 0.1% and vanishingly small (experimental - fitted) residuals. Modeling of the whole-head (1) H-MRS increases WBNAA quantification reliability by reducing its variability, its susceptibility to operator bias and baseline roll, and by providing quality-control feedback. Together, these enhance the usefulness of the technique for monitoring the diffuse progression and treatment response of neurological disorders.


Asunto(s)
Ácido Aspártico/análogos & derivados , Química Encefálica , Espectroscopía de Protones por Resonancia Magnética/métodos , Adulto , Ácido Aspártico/análisis , Automatización , Encéfalo/anatomía & histología , Simulación por Computador , Femenino , Humanos , Masculino , Neuronas/metabolismo , Tamaño de los Órganos , Fantasmas de Imagen , Espectroscopía de Protones por Resonancia Magnética/instrumentación , Protones , Valores de Referencia
12.
NMR Biomed ; 26(4): 480-8, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23418159

RESUMEN

To test the hypotheses that global decreased neuro-axonal integrity reflected by decreased N-acetylaspartate (NAA) and increased glial activation reflected by an elevation in its marker, the myo-inositol (mI), present in a CD8-depleted rhesus macaque model of HIV-associated neurocognitive disorders. To this end, we performed quantitative MRI and 16 × 16 × 4 multivoxel proton MRS imaging (TE/TR = 33/1400 ms) in five macaques pre- and 4-6 weeks post-simian immunodeficiency virus infection. Absolute NAA, creatine, choline (Cho), and mI concentrations, gray and white matter (GM and WM) and cerebrospinal fluid fractions were obtained. Global GM and WM concentrations were estimated from 224 voxels (at 0.125 cm(3) spatial resolution over ~35% of the brain) using linear regression. Pre- to post-infection global WM NAA declined 8%: 6.6 ± 0.4 to 6.0 ± 0.5 mM (p = 0.05); GM Cho declined 20%: 1.3 ± 0.2 to 1.0 ± 0.1 mM (p < 0.003); global mI increased 11%: 5.7 ± 0.4 to 6.5 ± 0.5 mM (p < 0.03). Global GM and WM brain volume fraction changes were statistically insignificant. These metabolic changes are consistent with global WM (axonal) injury and glial activation, and suggest a possible GM host immune response.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Sustancia Gris/metabolismo , Depleción Linfocítica , Macaca mulatta/virología , Espectroscopía de Protones por Resonancia Magnética , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/fisiología , Sustancia Blanca/metabolismo , Animales , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Colina/metabolismo , Creatina/metabolismo , Femenino , Inositol/metabolismo , Macaca mulatta/inmunología , Masculino , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Marcadores de Spin , Sustancia Blanca/patología
13.
Epilepsy Behav ; 27(2): 319-25, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23524469

RESUMEN

Since approximately 5-10% of the ~50,000 tuberous sclerosis complex (TSC) patients in the US are "MRI-negative," our goal was to test the hypothesis that they nevertheless exhibit metabolic abnormalities. To test this, we used proton MR spectroscopy to obtain and compare gray and white matter (GM and WM) levels of the neuronal marker, N-acetylaspartate (NAA), the glial marker, myo-inositol (mI), and its associated creatine (Cr), and choline (Cho) between two "MRI-negative" female TSC patients (ages 5 and 43 years) and their matched controls. The NAA, Cr, Cho and mI concentrations, 9.8, 6.3, 1.4, and 5.7 mM, in the pediatric control were similar to those of the patients, whereas the adult patient revealed a 17% WM NAA decrease and 16% WM Cho increase from their published means for healthy adults - both outside their respective 90% prediction intervals. These findings suggest that longer disease duration and/or TSC2 gene mutation may cause axonal dysfunction and demyelination.


Asunto(s)
Ácido Aspártico/análogos & derivados , Encéfalo/metabolismo , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Esclerosis Tuberosa/metabolismo , Adolescente , Adulto , Ácido Aspártico/metabolismo , Niño , Preescolar , Colina/metabolismo , Creatina/metabolismo , Femenino , Humanos , Inositol/metabolismo , Masculino , Esclerosis Tuberosa/patología , Adulto Joven
14.
Neuroimage Clin ; 37: 103325, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36724732

RESUMEN

PURPOSE: Proton magnetic resonance spectroscopy (1H MRS) offers biomarkers of metabolic damage after mild traumatic brain injury (mTBI), but a lack of replicability studies hampers clinical translation. In a conceptual replication study design, the results reported in four previous publications were used as the hypotheses (H1-H7), specifically: abnormalities in patients are diffuse (H1), confined to white matter (WM) (H2), comprise low N-acetyl-aspartate (NAA) levels and normal choline (Cho), creatine (Cr) and myo-inositol (mI) (H3), and correlate with clinical outcome (H4); additionally, a lack of findings in regional subcortical WM (H5) and deep gray matter (GM) structures (H6), except for higher mI in patients' putamen (H7). METHODS: 26 mTBI patients (20 female, age 36.5 ± 12.5 [mean ± standard deviation] years), within two months from injury and 21 age-, sex-, and education-matched healthy controls were scanned at 3 Tesla with 3D echo-planar spectroscopic imaging. To test H1-H3, global analysis using linear regression was used to obtain metabolite levels of GM and WM in each brain lobe. For H4, patients were stratified into non-recovered and recovered subgroups using the Glasgow Outcome Scale Extended. To test H5-H7, regional analysis using spectral averaging estimated metabolite levels in four GM and six WM structures segmented from T1-weighted MRI. The Mann-Whitney U test and weighted least squares analysis of covariance were used to examine mean group differences in metabolite levels between all patients and all controls (H1-H3, H5-H7), and between recovered and non-recovered patients and their respectively matched controls (H4). Replicability was defined as the support or failure to support the null hypotheses in accordance with the content of H1-H7, and was further evaluated using percent differences, coefficients of variation, and effect size (Cohen's d). RESULTS: Patients' occipital lobe WM Cho and Cr levels were 6.0% and 4.6% higher than controls', respectively (Cho, d = 0.37, p = 0.04; Cr, d = 0.63, p = 0.03). The same findings, i.e., higher patients' occipital lobe WM Cho and Cr (both p = 0.01), but with larger percent differences (Cho, 8.6%; Cr, 6.3%) and effect sizes (Cho, d = 0.52; Cr, d = 0.88) were found in the comparison of non-recovered patients to their matched controls. For the lobar WM Cho and Cr comparisons without statistical significance (frontal, parietal, temporal), unidirectional effect sizes were observed (Cho, d = 0.07 - 0.37; Cr, d = 0.27 - 0.63). No differences were found in any metabolite in any lobe in the comparison between recovered patients and their matched controls. In the regional analyses, no differences in metabolite levels were found in any GM or WM region, but all WM regions (posterior, frontal, corona radiata, and the genu, body, and splenium of the corpus callosum) exhibited unidirectional effect sizes for Cho and Cr (Cho, d = 0.03 - 0.34; Cr, d = 0.16 - 0.51). CONCLUSIONS: We replicated findings of diffuse WM injury, which correlated with clinical outcome (supporting H1-H2, H4). These findings, however, were among the glial markers Cho and Cr, not the neuronal marker NAA (not supporting H3). No differences were found in regional GM and WM metabolite levels (supporting H5-H6), nor in putaminal mI (not supporting H7). Unidirectional effect sizes of higher patients' Cho and Cr within all WM analyses suggest widespread injury, and are in line with the conclusion from the previous publications, i.e., that detection of WM injury may be more dependent upon sensitivity of the 1H MRS technique than on the selection of specific regions. The findings lend further support to the corollary that clinic-ready 1H MRS biomarkers for mTBI may best be achieved by using high signal-to-noise-ratio single-voxels placed anywhere within WM. The biochemical signature of the injury, however, may differ and therefore absolute levels, rather than ratios may be preferred. Future replication efforts should further test the generalizability of these findings.


Asunto(s)
Conmoción Encefálica , Lesiones Encefálicas , Humanos , Femenino , Adulto Joven , Adulto , Persona de Mediana Edad , Espectroscopía de Protones por Resonancia Magnética , Conmoción Encefálica/patología , Espectroscopía de Resonancia Magnética/métodos , Protones , Lesiones Encefálicas/patología , Encéfalo/patología , Ácido Aspártico , Creatina/metabolismo , Colina/metabolismo
15.
Magn Reson Med ; 67(1): 27-33, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21656555

RESUMEN

The longitudinal repeatability of proton MR spectroscopy ((1) H-MRS) in the healthy human brain at high fields over long periods is not established. Therefore, we assessed the inter- and intra-subject repeatability of (1) H-MRS in an approach suited for diffuse pathologies in 10 individuals, at 3T, annually for 3 years. Spectra from 480 voxels over 360 cm(3) (∼30%) of the brain, were individually phased, frequency-aligned, and summed into one average spectrum. This dramatically increases metabolites' signal-to-noise-ratios while maintaining narrow linewidths that improve quantification precision. The resulting concentrations of the N-acetylaspartate, creatine, choline, and myo-inositol are: 8.9 ± 0.8, 5.9 ± 0.6, 1.4 ± 0.1, and 4.5 ± 0.5 mM (mean ± standard-deviation). the inter-subject coefficients of variation are 8.7%, 10.2%, 10.7%, and 11.8%; and the longitudinal (intra-subject) coefficients of variation are lower still: 6.6%, 6.8%, 6.8%, and 10%, much better than the 35%, 44%, 55%, and 62% intra-voxel coefficients of variation. The biological and nonbiological components of the summed spectra coefficients of variation had similar contributions to the overall variance.


Asunto(s)
Envejecimiento/metabolismo , Ácido Aspártico/análogos & derivados , Encéfalo/metabolismo , Colina/metabolismo , Creatina/metabolismo , Inositol/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Algoritmos , Ácido Aspártico/metabolismo , Humanos , Estudios Longitudinales , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Distribución Tisular
16.
NMR Biomed ; 25(12): 1392-400, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22714729

RESUMEN

Since the brain's gray matter (GM) and white matter (WM) metabolite concentrations differ, their partial volumes can vary the voxel's ¹H MR spectroscopy (¹H-MRS) signal, reducing sensitivity to changes. While single-voxel ¹H-MRS cannot differentiate between WM and GM signals, partial volume correction is feasible by MR spectroscopic imaging (MRSI) using segmentation of the MRI acquired for VOI placement. To determine the magnitude of this effect on metabolic quantification, we segmented a 1-mm³ resolution MRI into GM, WM and CSF masks that were co-registered with the MRSI grid to yield their partial volumes in approximately every 1 cm³ spectroscopic voxel. Each voxel then provided one equation with two unknowns: its i- metabolite's GM and WM concentrations C(i) (GM) , C(i) (WM) . With the voxels' GM and WM volumes as independent coefficients, the over-determined system of equations was solved for the global averaged C(i) (GM) and C(i) (WM) . Trading off local concentration differences offers three advantages: (i) higher sensitivity due to combined data from many voxels; (ii) improved specificity to WM versus GM changes; and (iii) reduced susceptibility to partial volume effects. These improvements made no additional demands on the protocol, measurement time or hardware. Applying this approach to 18 volunteered 3D MRSI sets of 480 voxels each yielded N-acetylaspartate, creatine, choline and myo-inositol C(i) (GM) concentrations of 8.5 ± 0.7, 6.9 ± 0.6, 1.2 ± 0.2, 5.3 ± 0.6 mM, respectively, and C(i) (WM) concentrations of 7.7 ± 0.6, 4.9 ± 0.5, 1.4 ± 0.1 and 4.4 ± 0.6mM, respectively. We showed that unaccounted voxel WM or GM partial volume can vary absolute quantification by 5-10% (more for ratios), which can often double the sample size required to establish statistical significance.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/metabolismo , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Protones , Adulto , Femenino , Humanos , Masculino , Metaboloma , Persona de Mediana Edad , Adulto Joven
17.
Front Neurol ; 13: 1045678, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36686533

RESUMEN

Magnetic resonance spectroscopy is a powerful, non-invasive, quantitative imaging technique that allows for the measurement of brain metabolites that has demonstrated utility in diagnosing and characterizing a broad range of neurological diseases. Its impact, however, has been limited due to small sample sizes and methodological variability in addition to intrinsic limitations of the method itself such as its sensitivity to motion. The lack of standardization from a data acquisition and data processing perspective makes it difficult to pool multiple studies and/or conduct multisite studies that are necessary for supporting clinically relevant findings. Based on the experience of the ENIGMA MRS work group and a review of the literature, this manuscript provides an overview of the current state of MRS data harmonization. Key factors that need to be taken into consideration when conducting both retrospective and prospective studies are described. These include (1) MRS acquisition issues such as pulse sequence, RF and B0 calibrations, echo time, and SNR; (2) data processing issues such as pre-processing steps, modeling, and quantitation; and (3) biological factors such as voxel location, age, sex, and pathology. Various approaches to MRS data harmonization are then described including meta-analysis, mega-analysis, linear modeling, ComBat and artificial intelligence approaches. The goal is to provide both novice and experienced readers with the necessary knowledge for conducting MRS data harmonization studies.

18.
Magn Reson Med ; 65(6): 1522-31, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21337426

RESUMEN

Non-human primates are often used as preclinical model systems for (mostly diffuse or multi-focal) neurological disorders and their experimental treatment. Due to cost considerations, such studies frequently utilize non-destructive imaging modalities, MRI and proton MR spectroscopy ((1) H MRS). Cost may explain why the inter- and intra-animal reproducibility of the (1) H MRS observed brain metabolites, are not reported. To this end, we performed test-retest three-dimensional brain (1) H MRS in five healthy rhesus macaques at 3 T. Spectra were acquired from 224 isotropic (0.5 cm)(3) = 125 µL voxels, over 28 cm(3) (∼ 35%) of the brain, then individually phased, frequency aligned and summed into a spectrum representative of the entire volume of interest. This dramatically increases the metabolites' signal-to-noise ratios, while maintaining the (narrow) voxel linewidth. The results show that the average N-acetylaspartate, creatine, choline, and myo-inositol concentrations in the macaque brain are: 7.7 ± 0.5, 7.0 ± 0.5, 1.2 ± 0.1 and 4.0 ± 0.6 mM/g wet weight (mean ± standard deviation). Their inter-animal coefficients of variation (CV) are 4%, 4%, 6%, and 15%; and the longitudinal (intra-animal) CVs are lower still: 4%, 5%, 5%, and 4%, much better than the 22%, 33%, 36%, and 45% intra-voxel CVs, demonstrating the advantage of the approach and its utility for preclinical studies of diffuse neurological diseases in rhesus macaques.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Animales , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Colina/metabolismo , Creatina/metabolismo , Imagenología Tridimensional , Inositol/metabolismo , Macaca mulatta , Modelos Animales , Reproducibilidad de los Resultados
19.
Neurobiol Aging ; 98: 42-51, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33232854

RESUMEN

We characterize the whole-brain N-acetyl-aspartate (WBNAA) and brain tissue fractions across the adult lifespan and test the hypothesis that, despite age-related atrophy, neuronal integrity (reflected by WBNAA) is preserved in normal aging. Two-hundred-and-seven participants: 133 cognitively intact older adults (73.6 ± 7.4 mean ± standard deviation, range: 60-90 year old) and 84 young (37.9 ± 11, range: 21-59 year old) were scanned with proton magnetic resonance spectroscopy and T1-weighted MRI. Their WBNAA, fractional brain parenchyma, and gray and white matter volumes (fBPV, fGM, and fWM) were compared and modeled as functions of age and sex. Compared with young, older-adults' WBNAA was lower by ~35%, and fBPV, fGM and fWM were lower by ~10%. Linear regressions found 0.5%/year WBNAA and 0.2%/year fBPV and fGM declines, whereas fWM rose to age ~40 years, and declined thereafter. fBPV and fGM were 1.8% and 4% higher in women, with no sex decline rates difference. We conclude that contrary to our hypothesis, atrophy was accompanied by WBNAA decline. Across the entire age range, women's brains showed less atrophy than men's. Formulas to estimate WBNAA and brain tissue fractions in healthy adults are provided to help differentiate normal from abnormal aging.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/patología , Envejecimiento Saludable/metabolismo , Envejecimiento Saludable/patología , Anciano , Anciano de 80 o más Años , Ácido Aspártico/análogos & derivados , Atrofia , Femenino , Sustancia Gris/metabolismo , Sustancia Gris/patología , Humanos , Masculino , Persona de Mediana Edad , Tamaño de los Órganos , Caracteres Sexuales
20.
Brain Imaging Behav ; 15(2): 504-525, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32797399

RESUMEN

Proton (1H) magnetic resonance spectroscopy provides a non-invasive and quantitative measure of brain metabolites. Traumatic brain injury impacts cerebral metabolism and a number of research groups have successfully used this technique as a biomarker of injury and/or outcome in both pediatric and adult TBI populations. However, this technique is underutilized, with studies being performed primarily at centers with access to MR research support. In this paper we present a technical introduction to the acquisition and analysis of in vivo 1H magnetic resonance spectroscopy and review 1H magnetic resonance spectroscopy findings in different injury populations. In addition, we propose a basic 1H magnetic resonance spectroscopy data acquisition scheme (Supplemental Information) that can be added to any imaging protocol, regardless of clinical magnetic resonance platform. We outline a number of considerations for study design as a way of encouraging the use of 1H magnetic resonance spectroscopy in the study of traumatic brain injury, as well as recommendations to improve data harmonization across groups already using this technique.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Imagen por Resonancia Magnética , Adulto , Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Niño , Humanos , Espectroscopía de Resonancia Magnética , Espectroscopía de Protones por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA