Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Comp Biochem Physiol B Biochem Mol Biol ; 274: 110996, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38810773

RESUMEN

Spotted stem borer, Chilo partellus, undergoes larval diapause (hibernation and aestivation), and depends on the food reserve accumulated during feeding stage for its survival. Lipids are the primary source of energy during diapause, and essential for different cellular, biochemical and physiological functions. However, there is no information on lipid and lipophilic compound contents during different stages of hibernation, aestivation and nondiapause in C. partellus. Thus, we compared the concentration and composition of lipids in pre-diapause, diapause and post-diapause stages of hibernation and aestivation with nondiapause stages of C. partellus. The studies revealed significant differences in total lipids and various lipophilic compounds during different stages of diapause as compared to nondiapause C. partellus. The total lipids were significantly lower during diapause stage of aestivation and hibernation as compared to nondiapause larvae. Further, the linoleic acid, Methyl 3-methoxytetradecanoate, and l-(+)-Ascorbic acid 2,6-dihexadecanoate were significantly lower, and oleic and palmitoleic acids greater during pre-diapause and diapause stages of hibernation and aestivation as compared to nondiapause larvae. The cholesterol content was significantly greater during pre-diapause stage of hibernation, and diapause and post-diapause stages of aestivation as compared to nondiapause stages. The unsaturation ratio was significantly higher in the pre-diapause and diapause stages and lower in post-diapause stage of aestivation than the hibernation and nondiapause states. This study provides insights on differential lipid profiles during different phases of diapause, which could be useful for further understanding biochemical and physiological cross-talk, and develop target-specific technologies for the management of C. partellus.

2.
J Exp Zool A Ecol Integr Physiol ; 335(7): 595-601, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34185965

RESUMEN

The Chilo partellus (Crambidae: Lepidoptera) larvae undergoes both hibernation and estivation in India. Although, much has been done on reproductive physiological aspects, little is known about biochemical changes happening during hibernation and estivation in C. partellus. Thus, we mapped changes in amino acid and lipophilic profiles of C. partellus larvae while undergoing hibernation and estivation using high-performance liquid chromatography and gas chromatography mass spectroscopy. The studies revealed higher amounts of amino acids namely, serine, glycine, histidine, arginine, proline, tyrosine, and methionine in estivation, while lower in hibernation as compared with nondiapause larvae of C. partellus. Furthermore, the amounts of aspartic acid, glutamic acid, and alanine in hibernation, and threonine, valine, isoleucine, phenylalanine, and leucine in estivation were on par with nondiapause larvae. The lipophilic compounds namely, linoleic acid, stearic acid, eicosanoic acid, and n-pentadecanol were lower in hibernation than estivation and nondiapause larvae of C. partellus. Palmitoleic acid and methyl 3-methoxytetradecanoate contents were higher in hibernation than estivation and nondiapause, while myristic acid and lathosterol contents were higher in estivation than hibernation and nondiapause larvae of C. partellus. Cholesterol content was higher, while squalene and gamma-ergostenol were lower in hibernation and estivation as compared with nondiapause larvae of C. partellus. These findings suggest that certain amino acids may be constituents of heat-shock proteins and help C. partellus during estivation. However, the lipophilic compounds could be helpful in maintaining development during hibernation and estivation in C. partellus.


Asunto(s)
Diapausa , Mariposas Nocturnas , Aminoácidos , Animales , Estivación , Larva
3.
Zootaxa ; 4179(1): 128-132, 2016 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-27811698

RESUMEN

Genus Nishada Moore (1878) was proposed as a monotypic genus, under subfamily Lithosiinae, family Lithosiidae (now Lithosiini), including only Nishada flabrifera Moore (1878) from Calcutta (now as Kolkata), India. The genus is distributed from China to India, Thailand, Malaysia and up to Australia. The Indian fauna of Nishada is reported from North-East Himalayas, West Bengal (Kolkata) and South India. Members of this genus are unmarked, yellow to brown with short and broad wings. Genus Nishada has been taxonomically dealt by many authors but awaits thorough revision. HISTORY: Hampson (1900) included a total of ten species: Nishada niveola Hampson, 1900, Nishada syntomioides (Walker, 1862), Nishada impervia (Walker, 1865), Nishada marginalis (Felder 1875), Nishada tula Swinhoe, 1900, Nishada nodicornis (Walker 1862), Nishada rotundipennis (Walker 1862), Nishada flabrifera Moore, 1878, Nishada sambara (Moore 1859) and Nishada xantholoma (Snellen 1879). Swinhoe (1902) and Hampson (1911) then described two new species, Nishada melanistis and Nishada brunneipennis, respectively, followed by Rothschild (1912, 1913) who described a further seven new species, Nishada brunnea, Nishada flavens, Nishada testacea, Nishada griseoflava, Nishada fuscofascia, Nishada louisiadensis and Nishada aurantiaca, bringing the total to 19 species. Strand (1922) catalogued only 13 of these species in Nishada, transferring N. brunnea and N. fuscofascia to genus Scoliacma Meyrick (1886); N. testacea, N.griseoflava and N. louisiadensis Rothschild to Eilema Hübner (1819) and synonymising N. flavens with N. sambara. Next, Matsumura (1927) described N. formosibia, followed by two more species, N. aureocincta Debauche, 1938 and N. benjaminea Roepke, 1946. Holloway (2001) synonymised N. nodicornis with N. rotundipennis and added the description of a new subspecies, Nishada chilomorpha adunca Holloway, 2001 from Borneo, indicating a distributional range as far as North East India. The nominotypical subspecies, N. c. chilomorpha was suggested to be restricted to its type locality of Java. Bucsek (2012) added Nishada cameronensis, Dubatolov & Bucsek (2013) described Nishada schintlmeisteri and Bucsek (2016) described Nishada temenggora. So, at present, Nishada comprises19 species, of which three are known from India (Singh et al. 2014). Herein, we describe one further species, Nishada pseudochilomorpha Joshi & Singh sp. nov., from Jatinga (Assam, India). In addition, new distributional records are reported for N. flabrifera.


Asunto(s)
Mariposas Nocturnas/anatomía & histología , Mariposas Nocturnas/clasificación , Animales , Femenino , India , Masculino , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA