Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38811487

RESUMEN

One of the functions of peroxisomes is the oxidation of fatty acids (FAs). The importance of this function in our lives is evidenced by the presence of peroxisomal disorders caused by the genetic deletion of proteins involved in these processes. Unlike mitochondrial oxidation, peroxisomal oxidation is not directly linked to ATP production. What is the role of FA oxidation in peroxisomes? Recent studies have revealed that peroxisomes supply the building blocks for lipid synthesis in the endoplasmic reticulum and facilitate intracellular carbon recycling for membrane quality control. Accumulation of very long-chain fatty acids (VLCFAs), which are peroxisomal substrates, is a diagnostic marker in many types of peroxisomal disorders. However, the relationship between VLCFA accumulation and various symptoms of these disorders remains unclear. Recently, we developed a method for solubilizing VLCFAs in aqueous media and found that VLCFA toxicity could be mitigated by oleic acid replenishment. In this chapter, we present the physiological role of peroxisomal FA oxidation and the knowledge obtained from VLCFA-accumulating peroxisome-deficient cells.

2.
J Biol Chem ; 298(11): 102534, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36162507

RESUMEN

Gut microbiota regulate physiological functions in various hosts, such as energy metabolism and immunity. Lactic acid bacteria, including Lactobacillus plantarum, have a specific polyunsaturated fatty acid saturation metabolism that generates multiple fatty acid species, such as hydroxy fatty acids, oxo fatty acids, conjugated fatty acids, and trans-fatty acids. How these bacterial metabolites impact host physiology is not fully understood. Here, we investigated the ligand activity of lactic acid bacteria-produced fatty acids in relation to nuclear hormone receptors expressed in the small intestine. Our reporter assays revealed two bacterial metabolites of γ-linolenic acid (GLA), 13-hydroxy-cis-6,cis-9-octadecadienoic acid (γHYD), and 13-oxo-cis-6,cis-9-octadecadienoic acid (γKetoD) activated peroxisome proliferator-activated receptor delta (PPARδ) more potently than GLA. We demonstrate that both γHYD and γKetoD bound directly to the ligand-binding domain of human PPARδ. A docking simulation indicated that four polar residues (T289, H323, H449, and Y473) of PPARδ donate hydrogen bonds to these fatty acids. Interestingly, T289 does not donate a hydrogen bond to GLA, suggesting that bacterial modification of GLA introducing hydroxy and oxo group determines ligand selectivity. In human intestinal organoids, we determined γHYD and γKetoD increased the expression of PPARδ target genes, enhanced fatty acid ß-oxidation, and reduced intracellular triglyceride accumulation. These findings suggest that γHYD and γKetoD, which gut lactic acid bacteria could generate, are naturally occurring PPARδ ligands in the intestinal tract and may improve lipid metabolism in the human intestine.


Asunto(s)
Intestino Delgado , Lactobacillales , PPAR delta , Ácido gammalinolénico , Humanos , Ácido gammalinolénico/metabolismo , Lactobacillales/metabolismo , Ligandos , Organoides/metabolismo , PPAR delta/metabolismo , Intestino Delgado/metabolismo , Intestino Delgado/microbiología
3.
Biosci Biotechnol Biochem ; 87(6): 663-671, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-36941129

RESUMEN

α-Tomatine is a steroidal glycoalkaloid in tomato plants and degrades with ripening. The aglycone form, tomatidine, is reported to have beneficial effects. In this study, the ability of food-related microorganisms to produce tomatidine from α-tomatine was evaluated. A total of 11 strains of Aspergillus species belonging to the section Nigri exhibited tomatinase activity, and Aspergillus luchuensis JCM 22302 was selected for optimization due to its high activity in its mycelia, conidia, and non-mycotoxin-producing property. Next, using A. luchuensis JCM22302 conidia, the highest yield was obtained in a 24-h reaction with 50 m m of acetic acid-sodium acetate buffer (pH 5.5) at 37 °C. Similar to the tomato pathogen Fusarium oxysporum f. lyceopersici, the time course analysis suggested that A. luchuensis JCM 22302 removed the entire sugar moiety in a single step. Future research will focus on utilizing conidia for large-scale tomatidine production because of their high tolerance and manageability.


Asunto(s)
Aspergillus , Tomatina , Tomatina/química , Tomatina/metabolismo , Aspergillus/metabolismo
4.
Biosci Biotechnol Biochem ; 87(8): 925-932, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37156521

RESUMEN

PsADH, an alcohol dehydrogenase originating in Pantoea sp. was characterized and found to convert a broad variety of fatty alcohols into their corresponding aldehydes, the substrates of alkane biosynthesis. By coupling PsADH with NpAD, a cyanobacterial aldehyde-deformylating oxygenase, and by optimizing the conditions of the enzyme-catalyzed reactions, we achieved a 52% conversion of 1-tetradecanol to tridecane. We further applied this system to generate alkanes ranging from C5-17. These alkanes can be used as biofuels, suggesting that introducing a suitable alcohol dehydrogenase is an effective strategy to utilize fatty alcohols for alkane production.


Asunto(s)
Aldehídos , Oxigenasas , Alcohol Deshidrogenasa , Alcoholes Grasos , Alcanos , Catálisis , Alcoholes
5.
Chembiochem ; 23(4): e202100606, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-34929055

RESUMEN

Fatty acid hydratases (FAHs) catalyze regio- and stereo-selective hydration of unsaturated fatty acids to produce hydroxy fatty acids. Fatty acid hydratase-1 (FA-HY1) from Lactobacillus Acidophilus is the most promiscuous and regiodiverse FAH identified so far. Here, we engineered binding site residues of FA-HY1 (S393, S395, S218 and P380) by semi-rational protein engineering to alter regioselectivity. Although it was not possible to obtain a completely new type of regioselectivity with our mutant libraries, a significant shift of regioselectivity was observed towards cis-5, cis-8, cis-11, cis-14, cis-17-eicosapentaenoic acid (EPA). We identified mutants (S393/S395 mutants) with excellent regioselectivity, generating a single hydroxy fatty acid product from EPA (15-OH product), which is advantageous from application perspective. This result is impressive given that wild-type FA-HY1 produces a mixture of 12-OH and 15-OH products at 63 : 37 ratio (12-OH : 15-OH). Moreover, our results indicate that native FA-HY1 is at its limit in terms of promiscuity and regiospecificity, thus it may not be possible to diversify its product portfolio with active site engineering. This behavior of FA-HY1 is unlike its orthologue, fatty acid hydratase-2 (FA-HY2; 58 % sequence identity to FA-HY1), which has been shown earlier to exhibit significant promiscuity and regioselectivity changes by a few active site mutations. Our reverse engineering from FA-HY1 to FA-HY2 further demonstrates this conclusion.


Asunto(s)
Ácidos Grasos/biosíntesis , Hidrolasas/metabolismo , Ingeniería de Proteínas , Ácidos Grasos/química , Hidrolasas/genética , Lactobacillus acidophilus/enzimología , Modelos Moleculares , Estructura Molecular , Mutación , Estereoisomerismo
6.
Appl Environ Microbiol ; 88(23): e0126422, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36416567

RESUMEN

Alkanes produced by microorganisms are expected to be an alternative to fossil fuels as an energy source. Microbial synthesis of alkanes involves the formation of fatty aldehydes via fatty acyl coenzyme A (acyl-CoA) intermediates derived from fatty acid metabolism, followed by aldehyde decarbonylation to generate alkanes. Advancements in metabolic engineering have enabled the construction of such pathways in various microorganisms, including Escherichia coli. However, endogenous aldehyde reductases in the host microorganisms are highly active in converting fatty aldehydes to fatty alcohols, limiting the substrate pool for alkane production. To reuse the alcohol by-product, a screening of fatty alcohol-assimilating microorganisms was conducted, and a bacterial strain, Pantoea sp. strain 7-4, was found to convert 1-tetradecanol to tetradecanal. From this strain, an alcohol dehydrogenase, PsADH, was purified and found to be involved in 1-tetradecanol-oxidizing reaction. Subsequent heterologous expression of the PsADH gene in E. coli was conducted, and recombinant PsADH was purified for a series of biochemical characterizations, including cofactors, optimal reaction conditions, and kinetic parameters. Furthermore, direct alkane production from alcohol was achieved in E. coli by coexpressing PsADH with a cyanobacterial aldehyde-deformylating oxygenase and a reducing system, including ferredoxin and ferredoxin reductase, from Nostoc punctiforme PCC73102. The alcohol-aldehyde-alkane synthetic route established in this study will provide a new approach to utilizing fatty alcohols for the production of alkane biofuel. IMPORTANCE Alcohol dehydrogenases are a group of enzymes found in many organisms. Unfortunately, studies on these enzymes mainly focus on their activities toward short-chain alcohols. In this study, we discovered an alcohol dehydrogenase, PsADH, from the bacterium Pantoea sp. 7-4, which can oxidize 1-tetradecanol to tetradecanal. The medium-chain aldehyde products generated by this enzyme can serve as the substrate of aldehyde-deformylating oxygenase to produce alkanes. The enzyme found in this study can be applied to the biosynthetic pathway involving the formation of medium-chain aldehydes to produce alkanes and other valuable compounds.


Asunto(s)
Alcohol Deshidrogenasa , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Ferredoxinas/metabolismo , Aldehídos/metabolismo , Alcoholes/metabolismo , Alcanos/metabolismo , Ácidos Grasos/metabolismo , Alcoholes Grasos/metabolismo , Oxigenasas/metabolismo
7.
Biosci Biotechnol Biochem ; 86(10): 1467-1475, 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-35904311

RESUMEN

This study investigated different gut bacteria in an anaerobic environment to identify specific candidates that could transform astragaloside IV (AIV) to cycloastragenol (CA). Two representative gut microbes, lactic acid bacteria (LAB) and bifidobacteria, could metabolize AIV to CA. Multiple screenings showed two metabolic pathways to metabolize AIV in two groups of bacteria. LAB metabolized AIV initiated by removing the C-6 glucose, whereas bifidobacteria indicated the initial removal of C-3 xylose. The final products differed between the two groups as bifidobacteria showed the production of CA, whereas LAB demonstrated preferential production of 20R, 24S-epoxy-6α, -16ß, -25-trihydroxy-9, -19-cycloartan-3-one (CA-2H).


Asunto(s)
Bifidobacterium , Lactobacillales , Bacterias/metabolismo , Glucosa/metabolismo , Humanos , Sapogeninas , Saponinas , Triterpenos , Xilosa/metabolismo
8.
Biochem Biophys Res Commun ; 530(1): 342-347, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32828309

RESUMEN

We evaluated the effect of gut bacterial metabolites of polyunsaturated fatty acids on inflammation and found that 10-oxo-cis-6,trans-11-octadecadienoic acid (γKetoC) strikingly suppressed LPS-induced IL-6 release from bone marrow-derived macrophages (BMMs), which was accompanied by reduced mRNA expression of Il6, TNF, and Il1b. γKetoC decreased the cAMP concentration in BMMs, suggesting that γKetoC stimulated G protein-coupled receptors. A Gq agonist significantly suppressed LPS-induced IL-6 expression in BMMs, whereas a Gi inhibitor partially abrogated γKetoC-mediated IL-6 suppression. Cytosolic Ca2+ was markedly increased by γKetoC, which was partly but not fully abrogated by an ion channel inhibitor. Taken together, these data suggest that γKetoC suppresses inflammatory cytokine expression in macrophages primarily through Gq and partially through Gi. γKetoC suppressed osteoclast development and IL-6 expression in synovial fibroblasts from rheumatoid arthritis (RA) patients, suggesting the beneficial effect of γKetoC on the prevention or treatment of RA.


Asunto(s)
Ácidos Grasos Insaturados/metabolismo , Microbioma Gastrointestinal , Lactobacillales/metabolismo , Monocitos/metabolismo , Animales , Artritis Reumatoide/etiología , Artritis Reumatoide/metabolismo , Línea Celular , Células Cultivadas , Citocinas/metabolismo , Femenino , Humanos , Inflamación/etiología , Inflamación/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Factores Protectores , Células RAW 264.7
9.
Chembiochem ; 21(4): 550-563, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-31465143

RESUMEN

Enzymatic conversion of fatty acids (FAs) by fatty acid hydratases (FAHs) presents a green and efficient route for high-value hydroxy fatty acid (HFA) production. However, limited diversity was achieved among HFAs, to date, with respect to chain length and hydroxy position. In this study, two highly similar FAHs from Lactobacillus acidophilus were compared: FA-HY2 has a narrow substrate scope and strict regioselectivity, whereas FA-HY1 utilizes longer chain substrates and hydrates various double-bond positions. It is revealed that three active-site residues play a remarkable role in directing substrate specificity and regioselectivity of hydration. If these residues on FA-HY2 are mutated to the corresponding ones in FA-HY1, a significant expansion of substrate scope and a distinct enhancement in hydration of double bonds towards the ω-end of FAs is observed. A three-residue mutant of FA-HY2 (TM-FA-HY2) displayed an impressive reversal of regioselectivity towards linoleic acid, shifting the ratio of the HFA regioisomers (10-OH/13-OH) from 99:1 to 12:88. Notable changes in regioselectivity were also observed for arachidonic acid and for C18 polyunsaturated fatty acid substrates. In addition, TM-FA-HY2 converted eicosapentaenoic acid into its 12-hydroxy product with high conversion at the preparative scale. Furthermore, it is demonstrated that microalgae are a source of diverse FAs for HFA production. This study paves the way for tailor-made FAH design to enable the production of diverse HFAs for various applications from the polymer industry to medical fields.


Asunto(s)
Proteínas Bacterianas , Ácidos Grasos/metabolismo , Hidrolasas , Lactobacillus acidophilus/enzimología , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Hidrolasas/biosíntesis , Hidrolasas/química , Cinética , Ingeniería de Proteínas , Especificidad por Sustrato
10.
FASEB J ; 32(1): 304-318, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28904023

RESUMEN

Among dietary fatty acids with immunologic effects, ω-3 polyunsaturated fatty acids, such as α-linolenic acid (ALA), have been considered as factors that contribute to the differentiation of M2-type macrophages (M2 macrophages). In this study, we examined the effect of ALA and its gut lactic acid bacteria metabolites 13-hydroxy-9(Z),15(Z)-octadecadienoic acid (13-OH) and 13-oxo-9(Z),15(Z)-octadecadienoic acid (13-oxo) on the differentiation of M2 macrophages from bone marrow-derived cells (BMDCs) and investigated the underlying mechanisms. BMDCs were stimulated with ALA, 13-OH, or 13-oxo in the presence of IL-4 or IL-13 for 24 h, and significant increases in M2 macrophage markers CD206 and Arginase-1 (Arg1) were observed. In addition, M2 macrophage phenotypes were less prevalent following cotreatment with GPCR40 antagonists or inhibitors of PLC-ß and MEK under these conditions, suggesting that GPCR40 signaling is involved in the regulation of M2 macrophage differentiation. In further experiments, remarkable M2 macrophage accumulation was observed in the lamina propria of the small intestine of C57BL/6 mice after intragastric treatments with ALA, 13-OH, or 13-oxo at 1 g/kg of body weight per day for 3 d. These findings suggest a novel mechanism of M2 macrophage differentiation involving fatty acids from gut lactic acid bacteria and GPCR40 signaling.-Ohue-Kitano, R., Yasuoka, Y., Goto, T., Kitamura, N., Park, S.-B., Kishino, S., Kimura, I., Kasubuchi, M., Takahashi, H., Li, Y., Yeh, Y.-S., Jheng, H.-F., Iwase, M., Tanaka, M., Masuda, S., Inoue, T., Yamakage, H., Kusakabe, T., Tani, F., Shimatsu, A., Takahashi, N., Ogawa, J., Satoh-Asahara, N., Kawada, T. α-Linolenic acid-derived metabolites from gut lactic acid bacteria induce differentiation of anti-inflammatory M2 macrophages through G protein-coupled receptor 40.


Asunto(s)
Lactobacillales/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Ácido alfa-Linolénico/metabolismo , Animales , Diferenciación Celular , Microbioma Gastrointestinal , Células HEK293 , Humanos , Inmunidad Innata , Interleucina-4/metabolismo , Sistema de Señalización de MAP Quinasas , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , PPAR gamma/metabolismo
11.
Appl Microbiol Biotechnol ; 103(14): 5917-5923, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31111182

RESUMEN

Aliphatic medium-chain alkanes, a major component of gasoline, diesel, and jet fuels, are drop-in compatible fuels. Microorganisms with the capacity to produce medium-chain alkanes are promising for the bio-production of drop-in fuel. We found that Klebsiella sp. NBRC100048 has the ability to produce medium-chain alkanes from medium-chain aldehydes. We cloned a gene involved in conversion of aldehydes to alkanes by using a genomic fosmid library derived from Klebsiella sp. NBRC100048. The gene termed orf2991 encodes 506 amino acids and shows 62% sequence homology to the aldehyde dehydrogenase of Escherichia coli, aldB. The finding of orf2991 as a novel alkane-synthesizing enzyme gene similar to E. coli aldehyde dehydrogenase family, which is generally known to catalyze a reaction oxidizing aldehydes to fatty acids, indicated a novel function of aldehyde dehydrogenase. This finding is not only significant academically but allows developing the novel manufacturing methods of alkanes fermentation.


Asunto(s)
Alcanos/metabolismo , Proteínas Bacterianas/genética , Klebsiella/genética , Aldehído Deshidrogenasa/genética , Aldehídos/metabolismo , Proteínas Bacterianas/metabolismo , Biocombustibles , Clonación Molecular , Escherichia coli/genética , Biblioteca Genómica , Klebsiella/metabolismo , Ingeniería Metabólica , Homología de Secuencia
12.
FASEB J ; 31(11): 5036-5048, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28754711

RESUMEN

Gut microbiota can regulate the host energy metabolism; however, the underlying mechanisms that could involve gut microbiota-derived compounds remain to be understood. Therefore, in this study, we investigated the effects of KetoA [10-oxo-12(Z)-octadecenoic acid]-a linoleic acid metabolite produced by gut lactic acid bacteria-on whole-body energy metabolism and found that dietary intake of KetoA could enhance energy expenditure in mice, thereby protecting mice from diet-induced obesity. By using Ca2+ imaging and whole-cell patch-clamp methods, KetoA was noted to potently activate transient receptor potential vanilloid 1 (TRPV1) and enhance noradrenalin turnover in adipose tissues. In addition, KetoA up-regulated genes that are related to brown adipocyte functions, including uncoupling protein 1 (UCP1) in white adipose tissue (WAT), which was later diminished in the presence of a ß-adrenoreceptor blocker. By using obese and diabetic model KK-Ay mice, we further show that KetoA intake ameliorated obesity-associated metabolic disorders. In the absence of any observed KetoA-induced antiobesity effect or UCP1 up-regulation in TRPV1-deficient mice, we prove that the antiobesity effect of KetoA was caused by TRPV1 activation-mediated browning in WAT. KetoA produced in the gut could therefore be involved in the regulation of host energy metabolism.-Kim, M., Furuzono, T., Yamakuni, K., Li, Y., Kim, Y.-I., Takahashi, H., Ohue-Kitano, R., Jheng, H.-F., Takahashi, N., Kano, Y., Yu, R., Kishino, S., Ogawa, J., Uchida, K., Yamazaki, J., Tominaga, M., Kawada, T., Goto, T. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, enhances energy metabolism by activation of TRPV1.


Asunto(s)
Bacterias/metabolismo , Metabolismo Energético , Microbioma Gastrointestinal , Ácido Linoleico/metabolismo , Ácidos Oléicos/metabolismo , Canales Catiónicos TRPV/metabolismo , Adipocitos Marrones/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Masculino , Ratones , Ratones Noqueados , Proteína Desacopladora 1/metabolismo , Regulación hacia Arriba
13.
J Pharmacol Sci ; 138(1): 9-15, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30243517

RESUMEN

10-oxo-trans-11-octadecenoic acid (KetoC) and 10-hydroxy-cis-12-octadecenoic acid (HYA) are long-chain fatty acids generated from linoleic acid by the gut lactic acid bacterium Lactobacillus plantarum. These fatty acids have been reported to have anti-inflammatory activity in the intestine. However, little is known about their effects in the brain. In this study, we aimed to investigate the effects of these fatty acids on lipopolysaccharide (LPS)-induced inflammatory processes in mouse microglial cells (BV-2 cells). KetoC and HYA inhibited LPS-induced nitric oxide (NO) production and suppressed the expression of inducible NO synthase in BV-2 cells. NO changes in these inhibitory effects were observed with AH7614, a G-protein coupled receptor 120 antagonist, or the peroxisome proliferator-activated receptors antagonists, GW6471 and GW9662. In addition, KetoC and HYA did not inhibit translocation of p65, a subunit of NF-κB, or IκB degradation. Similarly, no effect on p38 or JNK phosphorylation was observed. However, KetoC and HYA were found to inhibit ERK phosphorylation induced by LPS, suggesting that these fatty acids may exert their anti-inflammatory effects through the inhibition of ERK activation in microglial cells.


Asunto(s)
Antiinflamatorios , Ácidos Grasos Insaturados/biosíntesis , Ácidos Grasos Insaturados/farmacología , Microbioma Gastrointestinal , Lactobacillus plantarum/metabolismo , Microglía/metabolismo , Ácidos Oléicos/biosíntesis , Ácidos Oléicos/farmacología , Animales , Células Cultivadas , Depresión Química , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ácido Linoleico/metabolismo , Lipopolisacáridos/efectos adversos , Ratones , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fosforilación/efectos de los fármacos
14.
Int J Food Sci Nutr ; 68(8): 941-951, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28438083

RESUMEN

The present study investigated the antiallergic and anti-inflammatory effects of 10-hydroxy-cis-12-octadecenoic acid (HYA), a novel gut microbial metabolite of linoleic acid, in NC/Nga mice, a model of atopic dermatitis (AD). Feeding HYA decreased the plasma immunoglobulin E level and skin infiltration of mast cells with a concomitant decrease in dermatitis score. HYA feeding decreased TNF-α and increased claudin-1, a tight junction protein, levels in the mouse skin. Cytokine expression levels in the skin and intestinal Peyer's patches cells suggested that HYA improved the Th1/Th2 balance in mice. Immunoglobulin A concentration in the feces of the HYA-fed mice was approximately four times higher than that in the control mice. Finally, denaturing gradient gel electrophoresis of the PCR-amplified 16 S rRNA gene of fecal microbes indicated the modification of microbiota by HYA. Taken together, the alterations in the intestinal microbiota might be, at least in part, associated with the antiallergic effect of HYA.


Asunto(s)
Dermatitis Atópica/dietoterapia , Suplementos Dietéticos , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Ácido Linoleico/farmacología , Ácidos Oléicos/farmacología , Alimentación Animal , Animales , Conducta Animal/efectos de los fármacos , Citocinas/genética , Citocinas/metabolismo , Dieta/veterinaria , Heces/química , Regulación de la Expresión Génica/fisiología , Inmunoglobulina A/química , Inflamación/tratamiento farmacológico , Ácido Linoleico/administración & dosificación , Ácido Linoleico/química , Ratones , Estructura Molecular , Ácidos Oléicos/administración & dosificación , Ácidos Oléicos/química , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
J Biol Chem ; 290(5): 2902-18, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25505251

RESUMEN

Gut microbial metabolites of polyunsaturated fatty acids have attracted much attention because of their various physiological properties. Dysfunction of tight junction (TJ) in the intestine contributes to the pathogenesis of many disorders such as inflammatory bowel disease. We evaluated the effects of five novel gut microbial metabolites on tumor necrosis factor (TNF)-α-induced barrier impairment in Caco-2 cells and dextran sulfate sodium-induced colitis in mice. 10-Hydroxy-cis-12-octadecenoic acid (HYA), a gut microbial metabolite of linoleic acid, suppressed TNF-α and dextran sulfate sodium-induced changes in the expression of TJ-related molecules, occludin, zonula occludens-1, and myosin light chain kinase. HYA also suppressed the expression of TNF receptor 2 (TNFR2) mRNA and protein expression in Caco-2 cells and colonic tissue. In addition, HYA suppressed the protein expression of TNFR2 in murine intestinal epithelial cells. Furthermore, HYA significantly up-regulated G protein-coupled receptor (GPR) 40 expression in Caco-2 cells. It also induced [Ca(2+)]i responses in HEK293 cells expressing human GPR40 with higher sensitivity than linoleic acid, its metabolic precursor. The barrier-recovering effects of HYA were abrogated by a GPR40 antagonist and MEK inhibitor in Caco-2 cells. Conversely, 10-hydroxyoctadacanoic acid, which is a gut microbial metabolite of oleic acid and lacks a carbon-carbon double bond at Δ12 position, did not show these TJ-restoring activities and down-regulated GPR40 expression. Therefore, HYA modulates TNFR2 expression, at least partially, via the GPR40-MEK-ERK pathway and may be useful in the treatment of TJ-related disorders such as inflammatory bowel disease.


Asunto(s)
Células Epiteliales/metabolismo , Intestinos/citología , Ácido Linoleico/metabolismo , Ácidos Oléicos/metabolismo , Animales , Células CACO-2 , Colitis/metabolismo , Células Epiteliales/citología , Femenino , Citometría de Flujo , Humanos , Inmunohistoquímica , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Endogámicos BALB C , Receptores Acoplados a Proteínas G/metabolismo
16.
Toxicol Appl Pharmacol ; 296: 1-9, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26879219

RESUMEN

Oxidative stress is a well-known cause of multiple diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway plays a central role in cellular antioxidative responses. In this study, we investigated the effects of novel fatty acid metabolite derivatives of linoleic acid generated by the gut lactic acid bacteria Lactobacillus plantarum on the Nrf2-ARE pathway. 10-Oxo-trans-11-octadecenoic acid (KetoC) protected HepG2 cells from cytotoxicity induced by hydrogen peroxide. KetoC also significantly increased cellular Nrf2 protein levels, ARE-dependent transcription, and the gene expression of antioxidative enzymes such as heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and NAD(P)H: quinone oxidoreductase 1 (NQO1) in HepG2 cells. Additionally, a single oral dose administration of KetoC also increased antioxidative gene expression and protein levels of Nrf2 and HO-1 in mouse organs. Since other fatty acid metabolites and linoleic acid did not affect cellular antioxidative responses, the cytoprotective effect of KetoC may be because of its α,ß-unsaturated carbonyl moiety. Collectively, our data suggested that KetoC activated the Nrf2-ARE pathway to enhance cellular antioxidative responses in vitro and in vivo, which further suggests that KetoC may prevent multiple diseases induced by oxidative stress.


Asunto(s)
Citoprotección/fisiología , Ácido Láctico/metabolismo , Lactobacillus plantarum/metabolismo , Ácido Linoleico/metabolismo , Ácidos Oléicos/metabolismo , Estrés Oxidativo/fisiología , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Citoprotección/efectos de los fármacos , Células Hep G2 , Humanos , Peróxido de Hidrógeno/toxicidad , Masculino , Ratones , Ratones Endogámicos ICR , Ácidos Oléicos/química , Estrés Oxidativo/efectos de los fármacos
17.
Biosci Biotechnol Biochem ; 80(11): 2132-2137, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27352072

RESUMEN

The establishment of renewable biofuel and chemical production is desirable because of global warming and the exhaustion of petroleum reserves. Sebacic acid (decanedioic acid), the material of 6,10-nylon, is produced from ricinoleic acid, a carbon-neutral material, but the process is not eco-friendly because of its energy requirements. Laccase-catalyzing oxidative cleavage of fatty acid was applied to the production of dicarboxylic acids using hydroxy and oxo fatty acids involved in the saturation metabolism of unsaturated fatty acids in Lactobacillus plantarum as substrates. Hydroxy or oxo fatty acids with a functional group near the carbon-carbon double bond were cleaved at the carbon-carbon double bond, hydroxy group, or carbonyl group by laccase and transformed into dicarboxylic acids. After 8 h, 0.58 mM of sebacic acid was produced from 1.6 mM of 10-oxo-cis-12,cis-15-octadecadienoic acid (αKetoA) with a conversion rate of 35% (mol/mol). This laccase-catalyzed enzymatic process is a promising method to produce dicarboxylic acids from biomass-derived fatty acids.

18.
Proc Natl Acad Sci U S A ; 110(44): 17808-13, 2013 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-24127592

RESUMEN

In the representative gut bacterium Lactobacillus plantarum, we identified genes encoding the enzymes involved in a saturation metabolism of polyunsaturated fatty acids and revealed in detail the metabolic pathway that generates hydroxy fatty acids, oxo fatty acids, conjugated fatty acids, and partially saturated trans-fatty acids as intermediates. Furthermore, we observed these intermediates, especially hydroxy fatty acids, in host organs. Levels of hydroxy fatty acids were much higher in specific pathogen-free mice than in germ-free mice, indicating that these fatty acids are generated through polyunsaturated fatty acids metabolism of gastrointestinal microorganisms. These findings suggested that lipid metabolism by gastrointestinal microbes affects the health of the host by modifying fatty acid composition.


Asunto(s)
Ácidos Grasos Insaturados/metabolismo , Tracto Gastrointestinal/microbiología , Lactobacillus plantarum/enzimología , Metabolismo de los Lípidos/fisiología , Redes y Vías Metabólicas/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cromatografía Liquida , Clonación Molecular , Cartilla de ADN/genética , Tracto Gastrointestinal/metabolismo , Lactobacillus plantarum/metabolismo , Redes y Vías Metabólicas/genética , Ratones , Datos de Secuencia Molecular , Familia de Multigenes/genética , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Análisis de Secuencia de ADN , Homología de Secuencia , Organismos Libres de Patógenos Específicos , Espectrometría de Masas en Tándem
19.
J Lipid Res ; 56(7): 1340-50, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25966711

RESUMEN

Hydroxy FAs, one of the gut microbial metabolites of PUFAs, have attracted much attention because of their various bioactivities. The purpose of this study was to identify lactic acid bacteria with the ability to convert linoleic acid (LA) to hydroxy FAs. A screening process revealed that a gut bacterium, Lactobacillus acidophilus NTV001, converts LA mainly into 13-hydroxy-cis-9-octadecenoic acid and resulted in the identification of the hydratase responsible, fatty acid hydratase 1 (FA-HY1). Recombinant FA-HY1 was purified, and its enzymatic characteristics were investigated. FA-HY1 could convert not only C18 PUFAs but also C20 and C22 PUFAs. C18 PUFAs with a cis carbon-carbon double bond at the Δ12 position were converted into the corresponding 13-hydroxy FAs. Arachidonic acid and DHA were converted into the corresponding 15-hydroxy FA and 14-hydroxy FA, respectively. To the best of our knowledge, this is the first report of a bacterial FA hydratase that can convert C20 and C22 PUFAs into the corresponding hydroxy FAs. These novel hydroxy FAs produced by using FA-HY1 should contribute to elucidating the bioactivities of hydroxy FAs.


Asunto(s)
Hidrolasas/metabolismo , Lactobacillus acidophilus/enzimología , Ácido Linoleico/química , Ácido Linoleico/metabolismo , Biocatálisis , Coenzimas/metabolismo , Hidrolasas/aislamiento & purificación , Cinética , Lactobacillus acidophilus/metabolismo , Estereoisomerismo , Especificidad por Sustrato , Agua/metabolismo
20.
Biochem Biophys Res Commun ; 459(4): 597-603, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25749343

RESUMEN

Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increased adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism.


Asunto(s)
Adipogénesis/efectos de los fármacos , Lactobacillus/metabolismo , Ácidos Linoleicos/biosíntesis , PPAR gamma/metabolismo , Animales , Metabolismo Energético , Ácidos Linoleicos/farmacología , Ratones , Células 3T3 NIH , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA