Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Biomed Eng Online ; 23(1): 38, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561821

RESUMEN

BACKGROUND: After stroke, restoring safe, independent, and efficient walking is a top rehabilitation priority. However, in nearly 70% of stroke survivors asymmetrical walking patterns and reduced walking speed persist. This case series study aims to investigate the effectiveness of transcutaneous spinal cord stimulation (tSCS) in enhancing walking ability of persons with chronic stroke. METHODS: Eight participants with hemiparesis after a single, chronic stroke were enrolled. Each participant was assigned to either the Stim group (N = 4, gait training + tSCS) or Control group (N = 4, gait training alone). Each participant in the Stim group was matched to a participant in the Control group based on age, time since stroke, and self-selected gait speed. For the Stim group, tSCS was delivered during gait training via electrodes placed on the skin between the spinous processes of C5-C6, T11-T12, and L1-L2. Both groups received 24 sessions of gait training over 8 weeks with a physical therapist providing verbal cueing for improved gait symmetry. Gait speed (measured from 10 m walk test), endurance (measured from 6 min walk test), spatiotemporal gait symmetries (step length and swing time), as well as the neurophysiological outcomes (muscle synergy, resting motor thresholds via spinal motor evoked responses) were collected without tSCS at baseline, completion, and 3 month follow-up. RESULTS: All four Stim participants sustained spatiotemporal symmetry improvements at the 3 month follow-up (step length: 17.7%, swing time: 10.1%) compared to the Control group (step length: 1.1%, swing time 3.6%). Additionally, 3 of 4 Stim participants showed increased number of muscle synergies and/or lowered resting motor thresholds compared to the Control group. CONCLUSIONS: This study provides promising preliminary evidence that using tSCS as a therapeutic catalyst to gait training may increase the efficacy of gait rehabilitation in individuals with chronic stroke. Trial registration NCT03714282 (clinicaltrials.gov), registration date: 2018-10-18.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Resultado del Tratamiento , Caminata/fisiología , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/terapia , Marcha/fisiología , Sobrevivientes
2.
Arch Phys Med Rehabil ; 105(10): 1930-1937, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38969255

RESUMEN

OBJECTIVES: To evaluate if acute intermittent hypoxia (AIH) coupled with transcutaneous spinal cord stimulation (tSCS) enhances task-specific training and leads to superior and more sustained gait improvements as compared with each of these strategies used in isolation in persons with chronic, incomplete spinal cord injury. DESIGN: Proof of concept, randomized crossover trial. SETTING: Outpatient, rehabilitation hospital. INTERVENTIONS: Ten participants completed 3 intervention arms: (1) AIH, tSCS, and gait training (AIH + tSCS); (2) tSCS plus gait training (SHAM AIH + tSCS); and (3) gait training alone (SHAM + SHAM). Each arm consisted of 5 consecutive days of intervention with a minimum of a 4-week washout between arms. The order of arms was randomized. The study took place from December 3, 2020, to January 4, 2023. MAIN OUTCOME MEASURES: 10-meter walk test at self-selected velocity (SSV) and fast velocity, 6-minute walk test, timed Up and Go (TUG) and secondary outcome measures included isometric ankle plantarflexion and dorsiflexion torque RESULTS: TUG improvements were 3.44 seconds (95% CI: 1.24-5.65) significantly greater in the AIH + tSCS arm than the SHAM AIH + tSCS arm at post-intervention (POST), and 3.31 seconds (95% CI: 1.03-5.58) greater than the SHAM + SHAM arm at 1-week follow up (1WK). SSV was 0.08 m/s (95% CI: 0.02-0.14) significantly greater following the AIH + tSCS arm than the SHAM AIH + tSCS at POST. Although not significant, the AIH + tSCS arm also demonstrated the greatest average improvements compared with the other 2 arms at POST and 1WK for the 6-minute walk test, fast velocity, and ankle plantarflexion torque. CONCLUSIONS: This pilot study is the first to demonstrate that combining these 3 neuromodulation strategies leads to superior improvements in the TUG and SSV for individuals with chronic incomplete spinal cord injury and warrants further investigation.


Asunto(s)
Estudios Cruzados , Trastornos Neurológicos de la Marcha , Prueba de Estudio Conceptual , Traumatismos de la Médula Espinal , Estimulación de la Médula Espinal , Humanos , Traumatismos de la Médula Espinal/rehabilitación , Masculino , Femenino , Persona de Mediana Edad , Estimulación de la Médula Espinal/métodos , Adulto , Trastornos Neurológicos de la Marcha/rehabilitación , Trastornos Neurológicos de la Marcha/fisiopatología , Hipoxia/rehabilitación , Prueba de Paso , Estimulación Eléctrica Transcutánea del Nervio/métodos , Terapia Combinada
3.
J Neuroeng Rehabil ; 19(1): 67, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35778757

RESUMEN

BACKGROUND: Abnormal patterns of muscle co-activation contribute to impaired movement after stroke. Previously, we developed a myoelectric computer interface (MyoCI) training paradigm to improve stroke-induced arm motor impairment by reducing the abnormal co-activation of arm muscle pairs. However, it is unclear to what extent the paradigm induced changes in the overall intermuscular coordination in the arm, as opposed to changing just the muscles trained with the MyoCI. This study examined the intermuscular coordination patterns of thirty-two stroke survivors who participated in 6 weeks of MyoCI training. METHODS: We used non-negative matrix factorization to identify the arm muscle synergies (coordinated patterns of muscle activity) during a reaching task before and after the training. We examined the extent to which synergies changed as the training reduced motor impairment. In addition, we introduced a new synergy analysis metric, disparity index (DI), to capture the changes in the individual muscle weights within a synergy. RESULTS: There was no consistent pattern of change in the number of synergies across the subjects after the training. The composition of muscle synergies, calculated using a traditional synergy similarity metric, also did not change after the training. However, the disparity of muscle weights within synergies increased after the training in the participants who responded to MyoCI training-that is, the specific muscles that the MyoCI was targeting became less correlated within a synergy. This trend was not observed in participants who did not respond to the training. CONCLUSIONS: These findings suggest that MyoCI training reduced arm impairment by decoupling only the muscles trained while leaving other muscles relatively unaffected. This suggests that, even after injury, the nervous system is capable of motor learning on a highly fractionated level. It also suggests that MyoCI training can do what it was designed to do-enable stroke survivors to reduce abnormal co-activation in targeted muscles. Trial registration This study was registered at ClinicalTrials.gov (NCT03579992, Registered 09 July 2018-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03579992?term=NCT03579992&draw=2&rank=1 ).


Asunto(s)
Músculos , Accidente Cerebrovascular , Humanos , Movimiento , Sobrevivientes , Extremidad Superior
4.
Front Physiol ; 15: 1409304, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113935

RESUMEN

Post-stroke gait asymmetry leads to inefficient gait and a higher fall risk, often causing limited home and community ambulation. Two types of treadmills are typically used for training focused on symmetry: split-belt and single belt treadmills, but there is no consensus on which treadmill is superior to improve gait symmetry in individuals with stroke. To comprehensively determine which intervention is superior, we considered multiple spatial and temporal gait parameters (step length, stride time, swing time, and stance time) and their symmetries. Ten individuals with stroke underwent a single session of split-belt treadmill training and single belt treadmill training on separate days. The changes in step length, stride time, swing time, stance time and their respective symmetries were compared to investigate which training improves both spatiotemporal gait parameters and symmetries immediately after the intervention and after 5 min of rest. Both types of treadmill training immediately increased gait velocity (0.08 m/s faster) and shorter step length (4.15 cm longer). However, split-belt treadmill training was more effective at improving step length symmetry (improved by 27.3%) without sacrificing gait velocity or step length. However, this step length symmetry effect diminished after a 5-min rest period. Split-belt treadmill training may have some advantages over single belt treadmill training, when targeting step length symmetry. Future research should focus on comparing the long-term effects of these two types of training and examining the duration of the observed effects to provide clinically applicable information.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA