RESUMEN
We showed to the same observers both dynamic and static 2D patterns that can both evoke distinctive perceptions of motion or optic flow, as if moving in a tunnel or into a dark hole. At all times pupil diameters were monitored with an infrared eye tracker. We found a converging set of results indicating stronger pupil dilations to expansive growth of shapes or optic flows evoking a forward motion into a dark tunnel. Multiple regression analyses showed that the pupil responses to the illusory expanding black holes of static patterns were predicted by the individuals' pupil response to optic flows showing spiraling motion or "free fall" into a black hole. Also, individuals' pupil responses to spiraling motion into dark tunnels predicted the individuals' sense of illusory expansion with the static, illusory expanding, dark holes. This correspondence across individuals between their pupil responses to both dynamic and static, illusory expanding, holes suggests that these percepts reflect a common perceptual mechanism, deriving motion from 2D scenes, and that the observers' pupil adjustments reflect the direction and strength of motion they perceive and the expected outcome of an increase in darkness.
Asunto(s)
Percepción de Movimiento , Flujo Optico , Ilusiones Ópticas , Pupila , Humanos , Pupila/fisiología , Percepción de Movimiento/fisiología , Adulto , Ilusiones Ópticas/fisiología , Adulto Joven , Flujo Optico/fisiología , Masculino , Femenino , Ilusiones/fisiologíaRESUMEN
Visual motion signals can produce self-motion perception known as vection in observers. Vection can be generated by illusory motions in the form of global expantion in still images as well as by visual motion signals. The perception of vection can be enhanced by flickering images at a rate of 5â Hz. This study examined the illusory motion and vection induced by a printed static image under flickering ambient light at rates up to 100â Hz. The perception of illusory motion and vection were enhanced by flickering ambient lights at 50, 75, and 100â Hz. The enhancement effect was higher for the flicker rates expected to be detectable by humans. The findings of this study suggest that alternating bright and dark signals to the cone receptors and primary visual cortex trigger perceptions of illusory motions.
RESUMEN
A physically stationary stimulus surrounded by a moving stimulus appears to move in the opposite direction. There are similarities between the characteristics of this phenomenon of induced motion and surround suppression of directionally selective neurons in the brain. Here, functional magnetic resonance imaging was used to investigate the link between the subjective perception of induced motion and cortical activity. The visual stimuli consisted of a central drifting sinusoid surrounded by a moving random-dot pattern. The change in cortical activity in response to changes in speed and direction of the central stimulus was measured. The human cortical area hMT+ showed the greatest activation when the central stimulus moved at a fast speed in the direction opposite to that of the surround. More importantly, the activity in this area was the lowest when the central stimulus moved in the same direction as the surround and at a speed such that the central stimulus appeared to be stationary. The results indicate that the activity in hMT+ is related to perceived speed modulated by induced motion rather than to physical speed or a kinetic boundary. Early visual areas (V1, V2, V3, and V3A) showed a similar pattern; however, the relationship to perceived speed was not as clear as that in hMT+. These results suggest that hMT+ may be a neural correlate of induced motion perception and play an important role in contrasting motion signals in relation to their surrounding context and adaptively modulating our motion perception depending on the spatial context.
Asunto(s)
Encéfalo/fisiología , Percepción de Movimiento/fisiología , Estimulación Luminosa/métodos , Desempeño Psicomotor/fisiología , Vías Visuales/fisiología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , MasculinoRESUMEN
A movie taken from the front window of a running train, with zooming in and out, has been popularly acknowledged as a perceptual illusion such that the train motion is perceived as much slower when zoomed in. This is, however, not a real illusion because the image speed varies as a function of the focal length of the lens. This could be a meta-illusion, that is, an illusory sense of illusion, that might reflect a lack of understanding of how zooming changes the geometrical structure of the image.
RESUMEN
Fish of any variety are nowadays being kept captive for several purposes, from recreational to alimentary to research. It is possible that we humans often underestimate or misunderstand the basic, natural needs of the species we use for our purposes. Sociality is likely to play an extensive and fundamental role in the quality of life of animals such as zebrafish. This study aimed to develop a dummy conspecific that included depth and motion illusions in order to assess whether these stimuli could represent a valid alternative to a conspecific in triggering shoaling behaviour in a well-known model in genetics and neuroscience, the zebrafish (Dario rerio). We thus replaced the natural livery of a zebrafish shape with three visual illusions: the Ouchi-Spillmann illusion, which generates an effect of local tilting motion; and another two which should create pictorial cues of tridimensionality. Via a binary shoal choice test, we assessed the time spent close to each of the three artificial dummies compared to neutral control stimuli such as grey ellipses. We found no preference for the illusory patterns, suggesting that the illusion was not perceived or, alternatively, that the perception of the illusion was not enough to elicit recognition of the dummy as conspecific and subsequent social behaviours.
RESUMEN
The "Rotating Snakes" figure elicits a clear sense of anomalous motion in stationary repetitive patterns. We used an event-related fMRI adaptation paradigm to investigate cortical mechanisms underlying the illusory motion. Following an adapting stimulus (S1) and a blank period, a probe stimulus (S2) that elicited illusory motion either in the same or in the opposite direction was presented. Attention was controlled by a fixation task, and control experiments precluded explanations in terms of artefacts of local adaptation, afterimages, or involuntary eye movements. Recorded BOLD responses were smaller for S2 in the same direction than S2 in the opposite direction in V1-V4, V3A, and MT+, indicating direction-selective adaptation. Adaptation in MT+ was correlated with adaptation in V1 but not in V4. With possible downstream inheritance of adaptation, it is most likely that adaptation predominantly occurred in V1. The results extend our previous findings of activation in MT+ (I. Kuriki, H. Ashida, I. Murakami, and A. Kitaoka, 2008), revealing the activity of the cortical network for motion processing from V1 towards MT+. This provides evidence for the role of front-end motion detectors, which has been assumed in proposed models of the illusion.
Asunto(s)
Adaptación Fisiológica/fisiología , Imagen por Resonancia Magnética , Percepción de Movimiento/fisiología , Ilusiones Ópticas/fisiología , Reconocimiento Visual de Modelos/fisiología , Corteza Visual/fisiología , Adulto , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Estimulación Luminosa , Adulto JovenRESUMEN
Murray recently introduced a novel computational lightness model, Markov illuminance and reflectance (MIR). MIR is a promising new approach that simulates human lightness processing using a conditional random field (CRF) where natural-scene statistics of reflectance and illumination are implemented. Although MIR can account for various lightness illusions and phenomena, it has limitations, such as the inability to predict reverse-contrast phenomena. In this study, we improved MIR performance by modifying its inference process, the prior on X-junctions, and that on general illumination changes. Our modified model improved predictions for Checkerboard assimilation, the simplified Checkershadow and its control figure, the influence of luminance noise, and White's effect and its several variants. In particular, White's effect is a partial reverse contrast that is challenging for computational models, so this improvement is a significant advance for the MIR framework. This study showed the high extensibility and potential of MIR, which shows the promise for further sophistication.
RESUMEN
Some static patterns evoke the perception of an illusory expanding central region or "hole." We asked observers to rate the magnitudes of illusory motion or expansion of black holes, and these predicted the degree of dilation of the pupil, measured with an eye tracker. In contrast, when the "holes" were colored (including white), i.e., emitted light, these patterns constricted the pupils, but the subjective expansions were also weaker compared with the black holes. The change rates of pupil diameters were significantly related to the illusory motion phenomenology only with the black holes. These findings can be accounted for within a perceiving-the-present account of visual illusions, where both the illusory motion and the pupillary adjustments represent compensatory mechanisms to the perception of the next moment, based on shared experiences with the ecological regularities of light.
RESUMEN
In our previous study, we successfully reproduced the illusory motion perceived in the rotating snakes illusion using deep neural networks incorporating predictive coding theory. In the present study, we further examined the properties of the network using a set of 1500 images, including ordinary static images of paintings and photographs and images of various types of motion illusions. Results showed that the networks clearly classified a group of illusory images and others and reproduced illusory motions against various types of illusions similar to human perception. Notably, the networks occasionally detected anomalous motion vectors, even in ordinally static images where humans were unable to perceive any illusory motion. Additionally, illusion-like designs with repeating patterns were generated using areas where anomalous vectors were detected, and psychophysical experiments were conducted, in which illusory motion perception in the generated designs was detected. The observed inaccuracy of the networks will provide useful information for further understanding information processing associated with human vision.
Asunto(s)
Ilusiones , Percepción de Movimiento , Humanos , Movimiento (Física) , Redes Neurales de la Computación , Visión OcularRESUMEN
Reversed apparent motion (or reversed phi) can be seen during a continuous dissolve between a positive and a spatially shifted negative version of the same image. Similar reversed effects can be seen in stereo when positive and spatially shifted negative images are presented separately to the two eyes or in a Vernier alignment task when the two images are juxtaposed one above the other. Gregory and Heard reported similar effects that they called "phenomenal phenomena." Here, we investigate the similarities between these different effects and put forward a simple, spatial-smoothing explanation that can account for both the direction and magnitude of the reversed effects in the motion, stereo and Vernier domains. In addition, we consider whether the striking motion effects seen when viewing Kitaoka's colour-dependent Fraser-Wilcox figures are related to the reversed phi illusion, given the similarity of the luminance profiles.
RESUMEN
Changes in the retinal size of stationary objects provide a cue to the observer's motion in the environment: Increases indicate the observer's forward motion, and decreases backward motion. In this study, a series of images each comprising a pair of pine-tree figures were translated into auditory modality using sensory substitution software. Resulting auditory stimuli were presented in an ascending sequence (i.e. increasing in intensity and bandwidth compatible with forward motion), descending sequence (i.e. decreasing in intensity and bandwidth compatible with backward motion), or in a scrambled order. During the presentation of stimuli, blindfolded participants estimated the lengths of wooden sticks by haptics. Results showed that those exposed to the stimuli compatible with forward motion underestimated the lengths of the sticks. This consistent underestimation may share some aspects with visual size-contrast effects such as the Ebbinghaus illusion. In contrast, participants in the other two conditions did not show such magnitude of error in size estimation; which is consistent with the "adaptive perceptual bias" towards acoustic increases in intensity and bandwidth. In sum, we report a novel cross-modal size-contrast illusion, which reveals that auditory motion cues compatible with listeners' forward motion modulate haptic representations of object size.
RESUMEN
The neural basis of illusory motion perception evoked from static images has not been established well. We examined changes in neural activity in motion sensitive areas of the human visual cortex by using functional magnetic resonance imaging (fMRI) technique when a static illusory-motion image ('Rotating Snakes') was presented to participants. The blood-oxygenation-level dependent (BOLD) signal changes were compared between the test stimulus that induced illusory motion perception and the control stimulus that did not. Comparison was also made between those stimuli with and without eye movements. Signal changes for the test stimulus were significantly larger than those for the control stimulus, if accompanied by eye movements. On the other hand, the difference in signal changes between test and control stimuli was smaller, if steady fixation was required. These results support the empirical finding that this illusion is related to some component of eye movements.
Asunto(s)
Mapeo Encefálico , Percepción de Movimiento/fisiología , Ilusiones Ópticas/fisiología , Corteza Visual/fisiología , Adulto , Atención/fisiología , Movimientos Oculares , Fijación Ocular , Humanos , Imagen por Resonancia Magnética , Persona de Mediana Edad , Neuronas/fisiología , Oxígeno/sangre , Estimulación Luminosa , Corteza Visual/irrigación sanguíneaRESUMEN
We compare two versions of two known phenomena, the Curvature blindness and the Kite mesh illusions, to highlight how similar manipulations lead to blindness to curvature and blindness to illusory curvature, respectively. The critical factor is a change in luminance polarity; this factor interferes with the computation of curvature along the contour, for both real and illusory curvature.
RESUMEN
Kitaoka's Tomato is a color illusion in which a semitransparent blue-green field is placed on top of a red object (a tomato). The tomato appears red even though the pixels would appear green if viewed in isolation. We show that this phenomenon can be explained by a high-pass filter and by histogram equalization. The results suggest that this illusion does not require complex inferences about color constancy; rather, the tomato's red is available in the physical stimulus at the appropriate spatial scale and dynamic range.
RESUMEN
The cerebral cortex predicts visual motion to adapt human behavior to surrounding objects moving in real time. Although the underlying mechanisms are still unknown, predictive coding is one of the leading theories. Predictive coding assumes that the brain's internal models (which are acquired through learning) predict the visual world at all times and that errors between the prediction and the actual sensory input further refine the internal models. In the past year, deep neural networks based on predictive coding were reported for a video prediction machine called PredNet. If the theory substantially reproduces the visual information processing of the cerebral cortex, then PredNet can be expected to represent the human visual perception of motion. In this study, PredNet was trained with natural scene videos of the self-motion of the viewer, and the motion prediction ability of the obtained computer model was verified using unlearned videos. We found that the computer model accurately predicted the magnitude and direction of motion of a rotating propeller in unlearned videos. Surprisingly, it also represented the rotational motion for illusion images that were not moving physically, much like human visual perception. While the trained network accurately reproduced the direction of illusory rotation, it did not detect motion components in negative control pictures wherein people do not perceive illusory motion. This research supports the exciting idea that the mechanism assumed by the predictive coding theory is one of basis of motion illusion generation. Using sensory illusions as indicators of human perception, deep neural networks are expected to contribute significantly to the development of brain research.
RESUMEN
The perceived speed of a ring of equally spaced dots moving around a circular path appears faster as the number of dots increases (Ho & Anstis, 2013, Best Illusion of the Year contest). We measured this "spinner" effect with radial sinusoidal gratings, using a 2AFC procedure where participants selected the faster one between two briefly presented gratings of different spatial frequencies (SFs) rotating at various angular speeds. Compared with the reference stimulus with 4 c/rev (0.64 c/rad), participants consistently overestimated the angular speed for test stimuli of higher radial SFs but underestimated that for a test stimulus of lower radial SFs. The spinner effect increased in magnitude but saturated rapidly as the test radial SF increased. Similar effects were observed with translating linear sinusoidal gratings of different SFs. Our results support the idea that human speed perception is biased by temporal frequency, which physically goes up as SF increases when the speed is held constant. Hence, the more dots or lines, the greater the perceived speed when they are moving coherently in a defined area.
RESUMEN
Most people see movement in Figure 1, although the image is static. Motion is seen from black --> blue --> white --> yellow --> black. Many hypotheses for the illusory motion have been proposed, although none have been tested physiologically. We found that the illusion works well even if it is achromatic: yellow is replaced with light gray, and blue is replaced with dark gray. We show that the critical feature for inducing illusory motion is the luminance relationship of the static elements. Illusory motion is seen from black --> dark gray --> white --> light gray --> black. In psychophysical experiments, we found that all four pairs of adjacent elements when presented alone each produced illusory motion consistent with the original illusion, a result not expected from any current models. We also show that direction-selective neurons in macaque visual cortex gave directional responses to the same static element pairs, also in a direction consistent with the illusory motion. This is the first demonstration of directional responses by single neurons to static displays and supports a model in which low-level, first-order motion detectors interpret contrast-dependent differences in response timing as motion. We demonstrate that this illusion is a static version of four-stroke apparent motion.
Asunto(s)
Sensibilidad de Contraste , Ilusiones , Movimiento (Física) , Neuronas/fisiología , Corteza Visual/fisiología , Potenciales de Acción , Animales , Color , Humanos , Macaca , PsicofísicaRESUMEN
The visual phantom illusion was first discovered by Rosenbach in 1902 and named 'moving phantoms' by Tynan and Sekuler in 1975 because of its strong dependence on motion. It was later revealed that phantoms can be generated by flickering the grating (flickering phantoms) or by low-luminance stationary gratings under dark adaptation (stationary phantoms). Although phantoms are much more visible at scotopic or mesopic adaptation levels (scotopic phantoms) than at photopic levels, we proposed a new phantom illusion which is fully visible in photopic vision (photopic phantoms). In 2001, we revealed that the visual phantom illusion is a higher-order perceptual construct or a Gestalt, which depends on the mechanism of perceptual transparency. Perceptual transparency is known as a perceptual product based upon brightness and contrast. We furthermore manifested the shared mechanisms between visual phantoms and neon color spreading or between visual phantoms and the Petter effect. In our recent study, the visual phantom illusion can also be seen with a stimulus of contrast-modulated gratings. We assume that this effect also depends on perceptual transparency induced by contrast modulation. Moreover, we found that the Craik-O'Brien-Cornsweet effect and other brightness illusions can generate the visual phantom illusion. In any case, we explain the visual phantom illusion in terms of surface completion, which is given by perceptual transparency.
Asunto(s)
Sensibilidad de Contraste/fisiología , Ilusiones/fisiología , Percepción de Cercanía/fisiología , Humanos , Luz , Reconocimiento Visual de ModelosRESUMEN
A stationary pattern with asymmetrical luminance gradients can appear to move. We hypothesized that the source signal of this illusion originates in retinal image motions due to fixational eye movements. We investigated the inter-subject correlation between fixation instability and illusion strength. First, we demonstrated that the strength of the illusion can be quantified by the nulling technique. Second, we concurrently measured cancellation velocity and fixation instability for each subject, and found a positive correlation between them. The same relationship was also found within a single observer when the visual stimulus was artificially moved in the simulation of fixation instability. Third, we confirmed the same correlation with eye movements for a wider variety of illusory displays. These results suggest that fixational eye movements indeed play a relevant role in generating this motion illusion.
Asunto(s)
Fijación Ocular/fisiología , Percepción de Movimiento/fisiología , Ilusiones Ópticas/fisiología , Adulto , Femenino , Humanos , Masculino , Reconocimiento Visual de Modelos/fisiología , Estimulación Luminosa/métodos , Movimientos Sacádicos/fisiologíaRESUMEN
In the "footsteps illusion", light and dark squares travel at constant speed across black and white stripes. The squares appear to move faster and slower as their contrast against the stripes varies. We now demonstrate some second-order footsteps illusions, in which all edges are defined by colors or textures-even though luminance-based neural motion detectors are blind to such edges.