Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 133(42): 16861-7, 2011 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-21916462

RESUMEN

In many biochemical processes, proteins need to bind partners amidst a sea of other molecules. Generally, partner selection is achieved by formation of a single-orientation complex with well-defined, short-range interactions. We describe a protein network that functions effectively in a metabolic electron transfer process but lacks such specific interactions. The soil bacterium Paracoccus denitrificans oxidizes a variety of compounds by channeling electrons into the main respiratory pathway. Upon conversion of methylamine by methylamine dehydrogenase, electrons are transported to the terminal oxidase to reduce molecular oxygen. Steady-state kinetic measurements and NMR experiments demonstrate a remarkable number of possibilities for the electron transfer, involving the cupredoxin amicyanin as well as four c-type cytochromes. The observed interactions appear to be governed exclusively by the electrostatic nature of each of the proteins. It is concluded that Paracoccus provides a pool of cytochromes for efficient electron transfer via weak, ill-defined interactions, in contrast with the view that functional biochemical interactions require well-defined molecular interactions. It is proposed that the lack of requirement for specificity in these interactions might facilitate the integration of new metabolic pathways.


Asunto(s)
Transporte de Electrón , Modelos Biológicos , Proteínas/química , Técnicas Electroquímicas , Espectroscopía de Resonancia Magnética , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/química , Paracoccus denitrificans/química , Unión Proteica
2.
J Am Chem Soc ; 132(41): 14537-45, 2010 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-20873742

RESUMEN

The first crystal structure of a ternary redox protein complex was comprised of the enzyme methylamine dehydrogenase (MADH) and two electron transfer proteins, amicyanin and cytochrome c-551i from Paracoccus denitrificans [Chen et al. Science 1994, 264, 86-90]. The arrangement of the proteins suggested possible electron transfer from the active site of MADH via the amicyanin copper ion to the cytochrome heme iron, although the distance between the metals is large. We studied the interactions between these proteins in solution. A titration followed by NMR spectroscopy shows that amicyanin binds cytochrome c-551i. The interface comprises the hydrophobic and positive patches of amicyanin, not the binding site observed in the ternary complex. NMR experiments further show that amicyanin binds tightly to MADH with an interface that matches the one observed in the crystal structure and that mostly overlaps with the binding site for cytochrome c-551i. Upon addition of cytochrome c-551i, no changes in the NMR spectrum of MADH-bound amicyanin are observed, suggesting that a possible interaction of the cytochrome with the binary complex must be very weak, with a dissociation constant higher than 2 mM. Reconstitution of the entire redox chain in vitro demonstrates that amicyanin can react rapidly with cytochrome c-551i, but that association of amicyanin with MADH inhibits this reaction. It is concluded that electron transfer from MADH to cytochrome c-551i does not involve a ternary complex but occurs via a ping-pong mechanism in which amicyanin uses the same interface for the reactions with MADH and cytochrome c-551i.


Asunto(s)
Proteínas Bacterianas/química , Grupo Citocromo c/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/química , Transporte de Electrón , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Paracoccus denitrificans/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA