Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 147(7): 2566-2578, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38289855

RESUMEN

Compartmentalized meningeal inflammation is thought to represent one of the key players in the pathogenesis of cortical demyelination in multiple sclerosis. PET targeting the 18 kDa mitochondrial translocator protein (TSPO) is a molecular-specific approach to quantifying immune cell-mediated density in the cortico-meningeal tissue compartment in vivo. This study aimed to characterize cortical and meningeal TSPO expression in a heterogeneous cohort of multiple sclerosis cases using in vivo simultaneous MR-PET with 11C-PBR28, a second-generation TSPO radioligand, and ex vivo immunohistochemistry. Forty-nine multiple sclerosis patients (21 with secondary progressive and 28 with relapsing-remitting multiple sclerosis) with mixed or high affinity binding for 11C-PBR28 underwent 90-min 11C-PBR28 simultaneous MR-PET. Tracer binding was measured using 60-90 min normalized standardized uptake value ratios sampled at mid-cortical depth and ∼3 mm above the pial surface. Data in multiple sclerosis patients were compared to 21 age-matched healthy controls. To characterize the nature of 11C-PBR28 PET uptake, the meningeal and cortical lesion cellular expression of TSPO was further described in post-mortem brain tissue from 20 cases with secondary progressive multiple sclerosis and five age-matched healthy donors. Relative to healthy controls, patients with multiple sclerosis exhibited abnormally increased TSPO signal in the cortex and meningeal tissue, diffusively in progressive disease and more localized in relapsing-remitting multiple sclerosis. In multiple sclerosis, increased meningeal TSPO levels were associated with increased Expanded Disability Status Scale scores (P = 0.007, by linear regression). Immunohistochemistry, validated using in situ sequencing analysis, revealed increased TSPO expression in the meninges and adjacent subpial cortical lesions of post-mortem secondary progressive multiple sclerosis cases relative to control tissue. In these cases, increased TSPO expression was related to meningeal inflammation. Translocator protein immunostaining was detected on meningeal MHC-class II+ macrophages and cortical-activated MHC-class II+ TMEM119+ microglia. In vivo arterial blood data and neuropathology showed that endothelial binding did not significantly account for increased TSPO cortico-meningeal expression in multiple sclerosis. Our findings support the use of TSPO-PET in multiple sclerosis for imaging in vivo inflammation in the cortico-meningeal brain tissue compartment and provide in vivo evidence implicating meningeal inflammation in the pathogenesis of the disease.


Asunto(s)
Meninges , Esclerosis Múltiple , Tomografía de Emisión de Positrones , Receptores de GABA , Humanos , Receptores de GABA/metabolismo , Receptores de GABA/genética , Femenino , Masculino , Persona de Mediana Edad , Adulto , Tomografía de Emisión de Positrones/métodos , Meninges/metabolismo , Meninges/diagnóstico por imagen , Meninges/patología , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Anciano , Corteza Cerebral/metabolismo , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Esclerosis Múltiple Recurrente-Remitente/metabolismo , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/patología , Imagen por Resonancia Magnética , Esclerosis Múltiple Crónica Progresiva/metabolismo , Esclerosis Múltiple Crónica Progresiva/diagnóstico por imagen , Esclerosis Múltiple Crónica Progresiva/patología , Acetamidas , Piridinas
2.
Mult Scler ; 30(11-12): 1556-1560, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38872276

RESUMEN

BACKGROUND: Cortical lesion subtypes' occurrence and distribution across networks may shed light on cognitive impairment (CI) in multiple sclerosis (MS). METHODS: In 332 people with MS, lesions were classified as intracortical, leukocortical or juxtacortical based on artificially generated double inversion-recovery images. RESULTS: CI-related leukocortical lesion count increases were greatest within sensorimotor and cognitive networks (p < 0.001). Only intracortical lesion count could distinguish between cognitive groups (p = 0.024). Effect sizes were two- to four-fold larger than differences between MS phenotypes. CONCLUSION: In CI-MS, leukocortical lesions predominate, whereas intracortical lesions distinguish cognitive groups. Lesions' grey matter (GM) involvement might be decisive for cognition in MS, surpassing overall disease burden.


Asunto(s)
Disfunción Cognitiva , Imagen por Resonancia Magnética , Esclerosis Múltiple , Humanos , Femenino , Masculino , Adulto , Persona de Mediana Edad , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/patología , Esclerosis Múltiple/fisiopatología , Disfunción Cognitiva/etiología , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/patología , Corteza Cerebral/patología , Corteza Cerebral/diagnóstico por imagen , Sustancia Gris/patología , Sustancia Gris/diagnóstico por imagen
3.
Mult Scler ; 29(14): 1819-1830, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37947294

RESUMEN

BACKGROUND: Thalamic volume loss is known to be associated with clinical and cognitive disability in progressive multiple sclerosis (PMS). OBJECTIVE: To investigate the treatment effect of ibudilast on thalamic atrophy more than 96 weeks in the phase 2 trial in progressive(MS Secondary and Primary Progressive Ibudilast NeuroNEXT Trial in Multiple Sclerosis [SPRINT-MS]). METHODS: A total of 231 participants were randomized to either ibudilast (n = 114) or placebo (n = 117). Thalamic volume change was computed using Bayesian Sequence Adaptive Multimodal Segmentation tool (SAMseg) incorporating T1, fluid-attenuated inversion recovery (FLAIR), and fractional anisotropy maps and analyzed with a mixed-effects repeated-measures model. RESULTS: There was no significant difference in thalamic volumes between treatment groups. On exploratory analysis, participants with primary progressive multiple sclerosis (PPMS) on placebo had a 0.004% greater rate of thalamic atrophy than PPMS participants on ibudilast (p = 0.058, 95% confidence interval (CI) = -0.008 to <0.001). Greater reductions in thalamic volumes at more than 96 weeks were associated with worsening multiple sclerosis functional composite (MSFC-4) scores (p = 0.002) and worsening performance on the symbol digit modality test (SDMT) (p < 0.001). CONCLUSION: In a phase 2 trial evaluating ibudilast in PMS, no treatment effect was demonstrated in preventing thalamic atrophy. Participants with PPMS exhibited a treatment effect that trended toward significance. Longitudinal changes in thalamic volume were related to worsening of physical and cognitive disability, highlighting this outcome's clinical importance.


Asunto(s)
Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Humanos , Esclerosis Múltiple Crónica Progresiva/diagnóstico por imagen , Esclerosis Múltiple Crónica Progresiva/tratamiento farmacológico , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/tratamiento farmacológico , Teorema de Bayes , Atrofia/tratamiento farmacológico
4.
Mult Scler ; 28(7): 1146-1150, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35475382

RESUMEN

Monoclonal antibodies (mAbs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) received emergency use authorization for the acute treatment of COVID-19. We are not aware of published data on their use in immunosuppressed people with multiple sclerosis (pwMS). We report 23 pwMS (mean age = 49 years, ocrelizumab (n = 19), fingolimod (n = 2), vaccinated with at least an initial series (n = 19)) who received mAb for acute COVID-19. Following mAb receipt, approximately half recovered in <7 days (48%). There were no adverse events or deaths. Use of mAb for pwMS treated with fingolimod or ocrelizumab was not observed to be harmful and is likely helpful for treatment of acute COVID-19.


Asunto(s)
COVID-19 , Esclerosis Múltiple , Anticuerpos Antivirales , Clorhidrato de Fingolimod/uso terapéutico , Humanos , Persona de Mediana Edad , Esclerosis Múltiple/inducido químicamente , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/tratamiento farmacológico , SARS-CoV-2
5.
Neuroimage ; 240: 118323, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34216774

RESUMEN

Axon diameter mapping using diffusion MRI in the living human brain has attracted growing interests with the increasing availability of high gradient strength MRI systems. A systematic assessment of the consistency of axon diameter estimates within and between individuals is needed to gain a comprehensive understanding of how such methods extend to quantifying differences in axon diameter index between groups and facilitate the design of neurobiological studies using such measures. We examined the scan-rescan repeatability of axon diameter index estimation based on the spherical mean technique (SMT) approach using diffusion MRI data acquired with gradient strengths up to 300 mT/m on a 3T Connectom system in 7 healthy volunteers. We performed statistical power analyses using data acquired with the same protocol in a larger cohort consisting of 15 healthy adults to investigate the implications for study design. Results revealed a high degree of repeatability in voxel-wise restricted volume fraction estimates and tract-wise estimates of axon diameter index derived from high-gradient diffusion MRI data. On the region of interest (ROI) level, across white matter tracts in the whole brain, the Pearson's correlation coefficient of the axon diameter index estimated between scan and rescan experiments was r = 0.72 with an absolute deviation of 0.18 µm. For an anticipated 10% effect size in studies of axon diameter index, most white matter regions required a sample size of less than 15 people to observe a measurable difference between groups using an ROI-based approach. To facilitate the use of high-gradient strength diffusion MRI data for neuroscientific studies of axonal microstructure, the comprehensive multi-gradient strength, multi-diffusion time data used in this work will be made publicly available, in support of open science and increasing the accessibility of such data to the greater scientific community.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Neuroimagen/métodos , Adolescente , Adulto , Antropometría/métodos , Axones/ultraestructura , Imagen de Difusión por Resonancia Magnética/instrumentación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Proyectos de Investigación , Adulto Joven
6.
N Engl J Med ; 379(9): 846-855, 2018 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-30157388

RESUMEN

BACKGROUND: There are limited treatments for progressive multiple sclerosis. Ibudilast inhibits several cyclic nucleotide phosphodiesterases, macrophage migration inhibitory factor, and toll-like receptor 4 and can cross the blood-brain barrier, with potential salutary effects in progressive multiple sclerosis. METHODS: We enrolled patients with primary or secondary progressive multiple sclerosis in a phase 2 randomized trial of oral ibudilast (≤100 mg daily) or placebo for 96 weeks. The primary efficacy end point was the rate of brain atrophy, as measured by the brain parenchymal fraction (brain size relative to the volume of the outer surface contour of the brain). Major secondary end points included the change in the pyramidal tracts on diffusion tensor imaging, the magnetization transfer ratio in normal-appearing brain tissue, the thickness of the retinal nerve-fiber layer, and cortical atrophy, all measures of tissue damage in multiple sclerosis. RESULTS: Of 255 patients who underwent randomization, 129 were assigned to ibudilast and 126 to placebo. A total of 53% of the patients in the ibudilast group and 52% of those in the placebo group had primary progressive disease; the others had secondary progressive disease. The rate of change in the brain parenchymal fraction was -0.0010 per year with ibudilast and -0.0019 per year with placebo (difference, 0.0009; 95% confidence interval, 0.00004 to 0.0017; P=0.04), which represents approximately 2.5 ml less brain-tissue loss with ibudilast over a period of 96 weeks. Adverse events with ibudilast included gastrointestinal symptoms, headache, and depression. CONCLUSIONS: In a phase 2 trial involving patients with progressive multiple sclerosis, ibudilast was associated with slower progression of brain atrophy than placebo but was associated with higher rates of gastrointestinal side effects, headache, and depression. (Funded by the National Institute of Neurological Disorders and Stroke and others; NN102/SPRINT-MS ClinicalTrials.gov number, NCT01982942 .).


Asunto(s)
Encéfalo/patología , Esclerosis Múltiple Crónica Progresiva/tratamiento farmacológico , Inhibidores de Fosfodiesterasa/uso terapéutico , Piridinas/uso terapéutico , Adulto , Atrofia/prevención & control , Encéfalo/diagnóstico por imagen , Depresión/inducido químicamente , Imagen de Difusión Tensora , Progresión de la Enfermedad , Método Doble Ciego , Femenino , Enfermedades Gastrointestinales/inducido químicamente , Cefalea/inducido químicamente , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple Crónica Progresiva/patología , Inhibidores de Fosfodiesterasa/efectos adversos , Piridinas/efectos adversos
7.
Mult Scler ; 27(5): 674-683, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32584159

RESUMEN

BACKGROUND: Thalamic pathology is a marker for neurodegeneration and multiple sclerosis (MS) disease progression. OBJECTIVE: To characterize (1) the morphology of thalamic lesions, (2) their relation to cortical and white matter (WM) lesions, and (3) clinical measures, and to assess (4) the imaging correlates of thalamic atrophy. METHODS: A total of 90 MS patients and 44 healthy controls underwent acquisition of 7 Tesla images for lesion segmentation and 3 Tesla scans for atrophy evaluation. Thalamic lesions were classified according to the shape and the presence of a central venule. Regression analysis identified the predictors of (1) thalamic atrophy, (2) neurological disability, and (3) information processing speed. RESULTS: Thalamic lesions were mostly ovoid than periventricular, and for the great majority (78%) displayed a central venule. Lesion volume in the thalamus, cortex, and WM did not correlate with each other. Thalamic atrophy was only associated with WM lesion volume (p = 0.002); subpial and WM lesion volumes were associated with neurological disability (p = 0.016; p < 0.001); and WM and thalamic lesion volumes were related with cognitive impairment (p < 0.001; p = 0.03). CONCLUSION: Thalamic lesions are unrelated to those in the cortex and WM, suggesting that they may not share common pathogenic mechanisms and do not contribute to thalamic atrophy. Combined WM, subpial, and thalamic lesion volumes at 7 Tesla contribute to the disease severity.


Asunto(s)
Disfunción Cognitiva , Esclerosis Múltiple , Atrofia/patología , Disfunción Cognitiva/patología , Humanos , Imagen por Resonancia Magnética , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Tálamo/diagnóstico por imagen , Tálamo/patología
8.
Mult Scler ; 27(13): 2014-2022, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33635141

RESUMEN

BACKGROUND: Sensitive and specific biomarkers for use in progressive multiple sclerosis (MS) have not been established. We investigate neurofilament light (NfL) as a treatment response biomarker in progressive MS. OBJECTIVE: To evaluate whether ibudilast 100 mg/day alters serum and cerebrospinal fluid (CSF) levels of NfL in progressive MS. METHODS: In a protocol-defined exploratory analysis from a 2-year, phase 2 clinical trial of ibudilast in progressive MS (NCT01982942), serum samples were collected from 239 subjects and a subset contributed CSF and assayed using single-molecule assay (SIMOA) immunoassay. A mixed model for repeated measurements yielded log(NfL) as the response variable. RESULTS: The geometric mean baseline serum NfL was 31.9 and 28.8 pg/mL in placebo and ibudilast groups, respectively. The geometric mean baseline CSF NfL was 1150.8 and 1290.3 pg/mL in placebo and ibudilast groups, respectively. Serum and CSF NfL correlations were r = 0.52 and r = 0.78 at weeks 48 and 96, respectively. Over 96 weeks, there was no between-group difference in NfL in either serum (p = 0.76) or CSF (p = 0.46). After controlling for factors that may affect NfL, no effect of ibudilast on NfL in either serum or CSF was observed. CONCLUSION: Ibudilast treatment was not associated with a change in either serum or CSF NfL.


Asunto(s)
Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Biomarcadores , Humanos , Filamentos Intermedios , Esclerosis Múltiple Crónica Progresiva/tratamiento farmacológico , Proteínas de Neurofilamentos , Piridinas
9.
Mult Scler ; 27(1): 79-89, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32065561

RESUMEN

BACKGROUND: The importance of supporting pregnancy-related decisions in multiple sclerosis (MS) patients has increasingly been recognized and hence the need for prospective data on pregnancy and pediatric outcomes in this patient population. OBJECTIVE: To assess prospective growth and developmental outcomes of infants born to mothers with multiple sclerosis (IMS). METHODS: PREG-MS is a prospective multicenter cohort study in New England, United States. We followed 65 women with MS and their infants with up to 12 months consistent pediatric follow-up. Pediatric, neurologic, and demographic information was obtained via structured telephone interviews and validated with medical records. RESULTS: No differences in infant weights and lengths with World Health Organization (WHO) 50th percentile standards were observed (p > 0.05). However, larger head circumference (HC) measurements than WHO standards were reported in cohort infants (p < 0.05). There was no association between HC and markers of maternal MS activity, demographic, or social factors. No irreversible pediatric developmental abnormalities were observed. CONCLUSION: This first prospective study on pediatric anthropometry in IMS suggests a possible increase in HC compared to WHO standards without an increase in irreversible developmental abnormalities. The observations are exploratory and require confirmation with larger prospective studies in diverse groups of MS patients.


Asunto(s)
Madres , Esclerosis Múltiple , Antropometría , Niño , Estudios de Cohortes , Femenino , Humanos , Lactante , Embarazo , Estudios Prospectivos , Estados Unidos
10.
Mult Scler ; 27(9): 1384-1390, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33054533

RESUMEN

BACKGROUND: The SPRINT-MS trial demonstrated benefit of ibudilast on brain atrophy over 96 weeks in progressive multiple sclerosis (MS). Optical coherence tomography (OCT) was performed in all trial participants. OBJECTIVE: Report the OCT results of the SPRINT-MS trial. METHODS: OCT was obtained at baseline and every 6 months using spectral domain OCT and analyzed by an OCT reading center. Change in each OCT outcome measure by treatment group was estimated using linear mixed models. RESULTS: Change in pRNFL thickness was +0.0424 uM/year (95% confidence interval (CI): -0.3091 to 0.3939) for ibudilast versus -0.2630 uM (95% CI: -0.5973 to 0.0714) for placebo (n = 244, p = 0.22). Macular volume change was -0.00503 mm3/year (-0.02693 to 0.01688) with ibudilast versus -0.03659 mm3/year (-0.05824 to -0.01494) for placebo in the Spectralis cohort (n = 61, p = 0.044). For the Cirrus cohort, macular volume change was -0.00040 mm3/year (-0.02167, 0.020866) with ibudilast compared to -0.02083 mm3/year (-0.04134 to -0.00033) for placebo (n = 183, p = 0.1734). Ganglion cell-inner plexiform layer thickness change, available from Cirrus, was -0.4893 uM/year (-0.9132, -0.0654) with ibudilast versus -0.9587 uM/year (-1.3677, -0.5498) with placebo (n = 183, p = 0.12). CONCLUSION: Retinal thinning in MS may be attenuated by ibudilast. Sample size estimates suggest OCT can be a viable outcome measure in progressive MS trials if a therapy has a large treatment effect. TRIAL REGISTRATION: NN102/SPRINT-MS ClinicalTrials.gov number, NCT01982942.


Asunto(s)
Esclerosis Múltiple Crónica Progresiva , Piridinas/uso terapéutico , Humanos , Esclerosis Múltiple Crónica Progresiva/tratamiento farmacológico , Tomografía de Coherencia Óptica
11.
Brain ; 143(10): 2973-2987, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32935834

RESUMEN

We used 7 T MRI to: (i) characterize the grey and white matter pathology in the cervical spinal cord of patients with early relapsing-remitting and secondary progressive multiple sclerosis; (ii) assess the spinal cord lesion spatial distribution and the hypothesis of an outside-in pathological process possibly driven by CSF-mediated immune cytotoxic factors; and (iii) evaluate the association of spinal cord pathology with brain burden and its contribution to neurological disability. We prospectively recruited 20 relapsing-remitting, 15 secondary progressive multiple sclerosis participants and 11 age-matched healthy control subjects to undergo 7 T imaging of the cervical spinal cord and brain as well as conventional 3 T brain acquisition. Cervical spinal cord imaging at 7 T was used to segment grey and white matter, including lesions therein. Brain imaging at 7 T was used to segment cortical and white matter lesions and 3 T imaging for cortical thickness estimation. Cervical spinal cord lesions were mapped voxel-wise as a function of distance from the inner central canal CSF pool to the outer subpial surface. Similarly, brain white matter lesions were mapped voxel-wise as a function of distance from the ventricular system. Subjects with relapsing-remitting multiple sclerosis showed a greater predominance of spinal cord lesions nearer the outer subpial surface compared to secondary progressive cases. Inversely, secondary progressive participants presented with more centrally located lesions. Within the brain, there was a strong gradient of lesion formation nearest the ventricular system that was most evident in participants with secondary progressive multiple sclerosis. Lesion fractions within the spinal cord grey and white matter were related to the lesion fraction in cerebral white matter. Cortical thinning was the primary determinant of the Expanded Disability Status Scale, white matter lesion fractions in the spinal cord and brain of the 9-Hole Peg Test and cortical thickness and spinal cord grey matter cross-sectional area of the Timed 25-Foot Walk. Spinal cord lesions were localized nearest the subpial surfaces for those with relapsing-remitting and the central canal CSF surface in progressive disease, possibly implying CSF-mediated pathogenic mechanisms in lesion development that may differ between multiple sclerosis subtypes. These findings show that spinal cord lesions involve both grey and white matter from the early multiple sclerosis stages and occur mostly independent from brain pathology. Despite the prevalence of cervical spinal cord lesions and atrophy, brain pathology seems more strongly related to physical disability as measured by the Expanded Disability Status Scale.


Asunto(s)
Médula Cervical/diagnóstico por imagen , Imagen por Resonancia Magnética/tendencias , Esclerosis Múltiple Crónica Progresiva/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple Crónica Progresiva/epidemiología , Esclerosis Múltiple Recurrente-Remitente/epidemiología
12.
Neuroimage ; 222: 117197, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32745680

RESUMEN

Axon diameter mapping using high-gradient diffusion MRI has generated great interest as a noninvasive tool for studying trends in axonal size in the human brain. One of the main barriers to mapping axon diameter across the whole brain is accounting for complex white matter fiber configurations (e.g., crossings and fanning), which are prevalent throughout the brain. Here, we present a framework for generalizing axon diameter index estimation to the whole brain independent of the underlying fiber orientation distribution using the spherical mean technique (SMT). This approach is shown to significantly benefit from the use of real-valued diffusion data with Gaussian noise, which reduces the systematic bias in the estimated parameters resulting from the elevation of the noise floor when using magnitude data with Rician noise. We demonstrate the feasibility of obtaining whole-brain orientationally invariant estimates of axon diameter index and relative volume fractions in six healthy human volunteers using real-valued diffusion data acquired on a dedicated high-gradient 3-Tesla human MRI scanner with 300 mT/m maximum gradient strength. The trends in axon diameter index are consistent with known variations in axon diameter from histology and demonstrate the potential of this generalized framework for revealing coherent patterns in axonal structure throughout the living human brain. The use of real-valued diffusion data provides a viable solution for eliminating the Rician noise floor and should be considered for all spherical mean approaches to microstructural parameter estimation.


Asunto(s)
Axones/ultraestructura , Imagen de Difusión por Resonancia Magnética/métodos , Neuroimagen/métodos , Sustancia Blanca/diagnóstico por imagen , Adulto , Femenino , Humanos , Adulto Joven
13.
Mult Scler ; 26(12): 1497-1509, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31368404

RESUMEN

BACKGROUND: Neuroinflammation with microglia activation is thought to be closely related to cortical multiple sclerosis (MS) lesion pathogenesis. OBJECTIVE: Using 11C-PBR28 and 7 Tesla (7T) imaging, we assessed in 9 relapsing-remitting multiple sclerosis (RRMS) and 10 secondary progressive multiple sclerosis (SPMS) patients the following: (1) microglia activation in lesioned and normal-appearing cortex, (2) cortical lesion inflammatory profiles, and (3) the relationship between neuroinflammation and cortical integrity. METHODS: Mean 11C-PBR28 uptake was measured in focal cortical lesions, cortical areas with 7T quantitative T2* (q-T2*) abnormalities, and normal-appearing cortex. The relative difference in cortical 11C-PBR28 uptake between patients and 14 controls was used to classify cortical lesions as either active or inactive. Disease burden was investigated according to cortical lesion inflammatory profiles. The relation between q-T2* and 11C-PBR28 uptake along the cortex was assessed. RESULTS: 11C-PBR28 uptake was abnormally high in cortical lesions in RRMS and SPMS; in SPMS, tracer uptake was significantly increased also in normal-appearing cortex. 11C-PBR28 uptake and q-T2* correlated positively in many cortical areas, negatively in some regions. Patients with high cortical lesion inflammation had worse clinical outcome and higher intracortical lesion burden than patients with low inflammation. CONCLUSION: 11C-PBR28 and 7T imaging reveal distinct profiles of cortical inflammation in MS, which are related to disease burden.


Asunto(s)
Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Humanos , Inflamación/diagnóstico por imagen , Imagen por Resonancia Magnética , Esclerosis Múltiple/diagnóstico por imagen , Tomografía de Emisión de Positrones
14.
Mult Scler ; 26(6): 668-678, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-30973800

RESUMEN

BACKGROUND: Activated microglia, which can be detected in vivo by 11C-PBR28 positron emission tomography (PET), represent a main component of MS pathology in the brain. Their role in the cerebellum is still unexplored, although cerebellar involvement in MS is frequent and accounts for disability progression. OBJECTIVES: We aimed at characterizing cerebellar neuroinflammation in MS patients compared to healthy subjects by combining 11C-PBR28 MRI-Positron Emission Tomography (MR-PET) with 7 Tesla (T) MRI and assessing its relationship with brain neuroinflammation and clinical outcome measures. METHODS: Twenty-eight MS patients and 16 healthy controls underwent 11C-PBR28 MR-PET to measure microglia activation in normal appearing cerebellum and lesions segmented from 7 T scans. Patients were evaluated using the Expanded Disability Status Scale and Symbol Digit Modalities Test. 11C-PBR28 binding was assessed in regions of interest using 60-90 minutes standardized uptake values normalized by a pseudo-reference region in the brain normal appearing white matter. Multilinear regression was used to compare tracer uptake in MS and healthy controls and assess correlations with clinical scores. RESULTS: In all cerebellar regions examined, MS patients showed abnormally increased tracer uptake, which correlated with cognitive and neurological disability. CONCLUSION: Neuroinflammation is widespread in the cerebellum of patients with MS and related to neurological disability and cognitive impairment.


Asunto(s)
Cerebelo , Inflamación , Microglía , Esclerosis Múltiple , Neuroimagen , Pirimidinas/farmacocinética , Sustancia Blanca , Adulto , Cerebelo/diagnóstico por imagen , Cerebelo/inmunología , Cerebelo/metabolismo , Cerebelo/patología , Femenino , Humanos , Inflamación/diagnóstico por imagen , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Imagen Multimodal , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Tomografía de Emisión de Positrones , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/inmunología , Sustancia Blanca/metabolismo , Sustancia Blanca/patología
15.
Neuroimage ; 191: 325-336, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30790671

RESUMEN

Cerebral white matter exhibits age-related degenerative changes during the course of normal aging, including decreases in axon density and alterations in axonal structure. Noninvasive approaches to measure these microstructural alterations throughout the lifespan would be invaluable for understanding the substrate and regional variability of age-related white matter degeneration. Recent advances in diffusion magnetic resonance imaging (MRI) have leveraged high gradient strengths to increase sensitivity toward axonal size and density in the living human brain. Here, we examined the relationship between age and indices of axon diameter and packing density using high-gradient strength diffusion MRI in 36 healthy adults (aged 22-72) in well-defined central white matter tracts in the brain. A recently validated method for inferring the effective axonal compartment size and packing density from diffusion MRI measurements acquired with 300 mT/m maximum gradient strength was applied to the in vivo human brain to obtain indices of axon diameter and density in the corpus callosum, its sub-regions, and adjacent anterior and posterior fibers in the forceps minor and forceps major. The relationships between the axonal metrics, corpus callosum area and regional gray matter volume were also explored. Results revealed a significant increase in axon diameter index with advancing age in the whole corpus callosum. Similar analyses in sub-regions of the corpus callosum showed that age-related alterations in axon diameter index and axon density were most pronounced in the genu of the corpus callosum and relatively absent in the splenium, in keeping with findings from previous histological studies. The significance of these correlations was mirrored in the forceps minor and forceps major, consistent with previously reported decreases in FA in the forceps minor but not in the forceps major with age. Alterations in the axonal imaging metrics paralleled decreases in corpus callosum area and regional gray matter volume with age. Among older adults, results from cognitive testing suggested an association between larger effective compartment size in the corpus callosum, particularly within the genu of the corpus callosum, and lower scores on the Montreal Cognitive Assessment, largely driven by deficits in short-term memory. The current study suggests that high-gradient diffusion MRI may be sensitive to the axonal substrate of age-related white matter degeneration reflected in traditional DTI metrics and provides further evidence for regionally selective alterations in white matter microstructure with advancing age.


Asunto(s)
Envejecimiento/patología , Axones/patología , Encéfalo/patología , Cuerpo Calloso/patología , Adulto , Anciano , Imagen de Difusión por Resonancia Magnética/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
16.
Magn Reson Med ; 79(5): 2759-2765, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28994487

RESUMEN

PURPOSE: Recent MRI techniques have been introduced that can extract microstructural information in the white matter, such as the density or macromolecular content. Translating quantitative MRI to the clinic raises many challenges in terms of acquisition strategy, modeling of the MRI signal, artifact corrections, and metric extraction (template registration and partial volume effects). In this work, we investigated the scan-rescan repeatability of several quantitative MRI techniques in the human spinal cord. METHODS: AxCaliber metrics, macromolecular tissue volume, and the fiber g-ratio were estimated in the spinal cord of eight healthy subjects, scanned and rescanned the same day in two different sessions. RESULTS: Scan-rescan repeatability deviation was 3% for all metrics, in average in the white matter of all subjects. Intraclass correlation coefficient was up to 0.9. A three-way analysis of variance showed significant effects of white matter pathway, laterality, and subject. CONCLUSION: The present study suggests that quantitative MRI gives stable measurements of white matter microstructure in the spinal cord of healthy subjects. Our findings remain to be evaluated in diseased populations. Magn Reson Med 79:2759-2765, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Médula Espinal/química , Médula Espinal/diagnóstico por imagen , Adolescente , Adulto , Algoritmos , Femenino , Humanos , Masculino , Vaina de Mielina/química , Reproducibilidad de los Resultados , Procesamiento de Señales Asistido por Computador , Adulto Joven
17.
Mult Scler ; 24(13): 1687-1695, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-28933672

RESUMEN

BACKGROUND: Cerebellar lesions are often reported in relapsing-remitting multiple sclerosis (RRMS) and have been associated with impaired motor function and cognitive status. However, prior research has primarily focused on summary measures of cerebellar involvement (e.g. total lesion load, gray/white matter volume) and not on the effect of lesion load within specific regions of cerebellar white matter. OBJECTIVE: Spatially map the probability of cerebellar white matter lesion (CWML) occurrence in RRMS and explore the relationship between cognitive impairment and lesion (CWML) location within the cerebellum. METHODS: High-resolution structural magnetic resonance imaging (MRI) was acquired on 16 cognitively impaired (CI) and 15 cognitively preserved (CP) RRMS subjects at 3T and used for lesion identification and voxel-based lesion-symptom mapping (VLSM). RESULTS: CI RRMS demonstrated a predilection for the middle cerebellar peduncle (MCP). VLSM results indicate that lesions of the MCP are significantly associated with CI in RRMS. Measures of cerebellar lesion load were correlated with age at disease onset but not disease duration. CONCLUSION: A specific pattern of cerebellar lesions involving the MCP, rather than the total CWML load, contributes to cognitive dysfunction in RRMS. Cerebellar lesion profiles may provide a biomarker of current or evolving risk for cognitive status change in RRMS.


Asunto(s)
Disfunción Cognitiva/fisiopatología , Sustancia Gris/patología , Esclerosis Múltiple/patología , Sustancia Blanca/patología , Adulto , Cerebelo/patología , Trastornos del Conocimiento/fisiopatología , Disfunción Cognitiva/patología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/fisiopatología
18.
Brain ; 140(11): 2912-2926, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29053798

RESUMEN

Neuroaxonal pathology is a main determinant of disease progression in multiple sclerosis; however, its underlying pathophysiological mechanisms, including its link to inflammatory demyelination and temporal occurrence in the disease course are still unknown. We used ultra-high field (7 T), ultra-high gradient strength diffusion and T1/T2-weighted myelin-sensitive magnetic resonance imaging to characterize microstructural changes in myelin and neuroaxonal integrity in the cortex and white matter in early stage multiple sclerosis, their distribution in lesional and normal-appearing tissue, and their correlations with neurological disability. Twenty-six early stage multiple sclerosis subjects (disease duration ≤5 years) and 24 age-matched healthy controls underwent 7 T T2*-weighted imaging for cortical lesion segmentation and 3 T T1/T2-weighted myelin-sensitive imaging and neurite orientation dispersion and density imaging for assessing microstructural myelin, axonal and dendrite integrity in lesional and normal-appearing tissue of the cortex and the white matter. Conventional mean diffusivity and fractional anisotropy metrics were also assessed for comparison. Cortical lesions were identified in 92% of early multiple sclerosis subjects and they were characterized by lower intracellular volume fraction (P = 0.015 by paired t-test), lower myelin-sensitive contrast (P = 0.030 by related-samples Wilcoxon signed-rank test) and higher mean diffusivity (P = 0.022 by related-samples Wilcoxon signed-rank test) relative to the contralateral normal-appearing cortex. Similar findings were observed in white matter lesions relative to normal-appearing white matter (all P < 0.001), accompanied by an increased orientation dispersion (P < 0.001 by paired t-test) and lower fractional anisotropy (P < 0.001 by related-samples Wilcoxon signed-rank test) suggestive of less coherent underlying fibre orientation. Additionally, the normal-appearing white matter in multiple sclerosis subjects had diffusely lower intracellular volume fractions than the white matter in controls (P = 0.029 by unpaired t-test). Cortical thickness did not differ significantly between multiple sclerosis subjects and controls. Higher orientation dispersion in the left primary motor-somatosensory cortex was associated with increased Expanded Disability Status Scale scores in surface-based general linear modelling (P < 0.05). Microstructural pathology was frequent in early multiple sclerosis, and present mainly focally in cortical lesions, whereas more diffusely in white matter. These results suggest early demyelination with loss of cells and/or cell volumes in cortical and white matter lesions, with additional axonal dispersion in white matter lesions. In the cortex, focal lesion changes might precede diffuse atrophy with cortical thinning. Findings in the normal-appearing white matter reveal early axonal pathology outside inflammatory demyelinating lesions.


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Esclerosis Múltiple/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adulto , Anisotropía , Axones , Encéfalo/diagnóstico por imagen , Estudios de Cohortes , Imagen de Difusión por Resonancia Magnética , Progresión de la Enfermedad , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vaina de Mielina , Estudios Prospectivos
19.
Ann Neurol ; 80(5): 776-790, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27686563

RESUMEN

OBJECTIVE: In multiple sclerosis (MS), using simultaneous magnetic resonance-positron emission tomography (MR-PET) imaging with 11 C-PBR28, we quantified expression of the 18kDa translocator protein (TSPO), a marker of activated microglia/macrophages, in cortex, cortical lesions, deep gray matter (GM), white matter (WM) lesions, and normal-appearing WM (NAWM) to investigate the in vivo pathological and clinical relevance of neuroinflammation. METHODS: Fifteen secondary-progressive MS (SPMS) patients, 12 relapsing-remitting MS (RRMS) patients, and 14 matched healthy controls underwent 11 C-PBR28 MR-PET. MS subjects underwent 7T T2*-weighted imaging for cortical lesion segmentation, and neurological and cognitive evaluation. 11 C-PBR28 binding was measured using normalized 60- to 90-minute standardized uptake values and volume of distribution ratios. RESULTS: Relative to controls, MS subjects exhibited abnormally high 11 C-PBR28 binding across the brain, the greatest increases being in cortex and cortical lesions, thalamus, hippocampus, and NAWM. MS WM lesions showed relatively modest TSPO increases. With the exception of cortical lesions, where TSPO expression was similar, 11 C-PBR28 uptake across the brain was greater in SPMS than in RRMS. In MS, increased 11 C-PBR28 binding in cortex, deep GM, and NAWM correlated with neurological disability and impaired cognitive performance; cortical thinning correlated with increased thalamic TSPO levels. INTERPRETATION: In MS, neuroinflammation is present in the cortex, cortical lesions, deep GM, and NAWM, is closely linked to poor clinical outcome, and is at least partly linked to neurodegeneration. Distinct inflammatory-mediated factors may underlie accumulation of cortical and WM lesions. Quantification of TSPO levels in MS could prove to be a sensitive tool for evaluating in vivo the inflammatory component of GM pathology, particularly in cortical lesions. Ann Neurol 2016;80:776-790.


Asunto(s)
Sustancia Gris/diagnóstico por imagen , Inflamación/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple Crónica Progresiva/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Pirimidinas , Receptores de GABA/metabolismo , Sustancia Blanca/diagnóstico por imagen , Adulto , Femenino , Sustancia Gris/metabolismo , Humanos , Inflamación/metabolismo , Masculino , Persona de Mediana Edad , Imagen Multimodal , Esclerosis Múltiple Crónica Progresiva/metabolismo , Esclerosis Múltiple Recurrente-Remitente/metabolismo , Sustancia Blanca/metabolismo
20.
Hum Brain Mapp ; 37(8): 2849-68, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27219660

RESUMEN

The functional organization of the human brain consists of a high degree of connectivity between interhemispheric homologous regions. The degree of homotopic organization is known to vary across the cortex and homotopic connectivity is high in regions that share cross-hemisphere structural connections or are activated by common input streams (e.g., the visual system). Damage to one or both regions, as well as damage to the connections between homotopic regions, could disrupt this functional organization. Here were introduce and test a computationally efficient technique, surface-based homotopic interhermispheric connectivity (sHIC), that leverages surface-based registration and processing techniques in an attempt to improve the spatial specificity and accuracy of cortical interhemispheric connectivity estimated with resting state functional connectivity. This technique is shown to be reliable both within and across subjects. sHIC is also characterized in a dataset of nearly 1000 subjects. We confirm previous results showing increased interhemispheric connectivity in primary sensory regions, and reveal a novel rostro-caudal functionally defined network level pattern of sHIC across the brain. In addition, we demonstrate a structural-functional relationship between sHIC and atrophy of the corpus callosum in multiple sclerosis (r = 0.2979, p = 0.0461). sHIC presents as a sensitive and reliable measure of cortical homotopy that may prove useful as a biomarker in neurologic disease. Hum Brain Mapp 37:2849-2868, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Vías Nerviosas/fisiología , Adolescente , Adulto , Conjuntos de Datos como Asunto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA