Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 22(1)2017 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-28085079

RESUMEN

The synthesis of 4-styryl-substituted 2,3,8-trioxabicyclo[3.3.1]nonanes, peroxides with the core structure of the bioactive 1,2,4-trioxane ring, was conducted by a multistep route starting from the aryl methyl ketones 1a-1c. Condensation and reduction/oxidation delivered enals 4a-4c that were coupled with ethyl acetate and reduced to the 1,3-diol substrates 6a-6c. Highly diastereoselective photooxygenation delivered the hydroperoxides 7a-7c and subsequent PPTS (pyridinium-p-toluenesulfonic acid)-catalyzed peroxyacetalization with alkyl triorthoacetates gave the cyclic peroxides 8a-8e. These compounds in general show only moderate antimalarial activities. In order to extend the repertoire of cyclic peroxide structure, we aimed for the synthesis of spiro-perorthocarbonates from orthoester condensation of ß-hydroxy hydroperoxide 9 but could only realize the monocyclic perorthocarbonate 10. That the central peroxide moiety is the key structural motif in anticancer active GST (glutathione S-transferase)-inhibitors was elucidated by the synthesis of a 1,3-dioxane 15-with a similar substitution pattern as the pharmacologically active peroxide 11-via a singlet oxygen ene route from the homoallylic alcohol 12.


Asunto(s)
Antimaláricos/síntesis química , Antineoplásicos/síntesis química , Artemisininas/síntesis química , Ésteres/síntesis química , Compuestos Heterocíclicos/química , Peróxidos/síntesis química , Acetatos/química , Bencenosulfonatos/química , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Hexanonas/química , Oxidación-Reducción , Oxígeno Singlete/química , Compuestos de Espiro/química , Estereoisomerismo
2.
J Org Chem ; 79(4): 1818-29, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24475891

RESUMEN

The singlet oxygen reactivities and regioselectivities of the model compounds 1b-d were compared with those of the geminal (gem) selectivity model ethyl tiglate (1a). The kinetic cis effect is k(E)/k(Z) = 5.2 for the tiglate/angelate system 1a/1a' without a change in the high gem regioselectivity. Further conjugation to vinyl groups enabled mode-selective processes, namely, [4 + 2] cycloadditions versus ene reactions. The site-specific effects of methylation on the mode selectivity and the regioselectivity of the ene reaction were studied for dienes 1e-g. A vinylogous gem effect was observed for the γ,δ-dimethylated and α,γ,δ-trimethylated substrates 1h and 1i, respectively. The corresponding phenylated substrates 1j-l showed similar mode selectivity, as monomethylated 1j exhibited exclusively [4 + 2] reactivity while the tandem products 12 and 14 were isolated from the di- and trimethylated substrates 1k and 1l, respectively. The vinylogous gem effect favors the formation of 1,3-dienes from the substrates, and thus, secondary singlet oxygen addition was observed to give hydroperoxy-1,2-dioxenes 19 and 20 in an ene-diene transmissive cycloaddition sequence. These products were reduced to give alcohols (16, 17, and 18) or furans (24 and 25), respectively, or treated with titanium(IV) alkoxides to give the epoxy alcohols 26 and 27. The vinylogous gem effect is rationalized by DFT calculations showing that biradicals are the low-energy intermediates and that no reaction path bifurcations compete.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA