Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Genes Dev ; 26(19): 2206-21, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23028145

RESUMEN

The chemotrophic factor Netrin can simultaneously instruct different neurodevelopmental programs in individual neurons in vivo. How neurons correctly interpret the Netrin signal and undergo the appropriate neurodevelopmental response is not understood. Here we identify MIG-10 isoforms as critical determinants of individual cellular responses to Netrin. We determined that distinct MIG-10 isoforms, varying only in their N-terminal motifs, can localize to specific subcellular domains and are differentially required for discrete neurodevelopmental processes in vivo. We identified MIG-10B as an isoform uniquely capable of localizing to presynaptic regions and instructing synaptic vesicle clustering in response to Netrin. MIG-10B interacts with Abl-interacting protein-1 (ABI-1)/Abi1, a component of the WAVE complex, to organize the actin cytoskeleton at presynaptic sites and instruct vesicle clustering through SNN-1/Synapsin. We identified a motif in the MIG-10B N-terminal domain that is required for its function and localization to presynaptic sites. With this motif, we engineered a dominant-negative MIG-10B construct that disrupts vesicle clustering and animal thermotaxis behavior when expressed in a single neuron in vivo. Our findings indicate that the unique N-terminal domains confer distinct MIG-10 isoforms with unique capabilities to localize to distinct subcellular compartments, organize the actin cytoskeleton at these sites, and instruct distinct Netrin-dependent neurodevelopmental programs.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Proteínas del Citoesqueleto/metabolismo , Proteínas del Tejido Nervioso/genética , Vesículas Sinápticas/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Conducta Animal/fisiología , Caenorhabditis elegans/metabolismo , Movimiento Celular , Proteínas del Citoesqueleto/genética , Perfilación de la Expresión Génica , Interneuronas/citología , Neuronas Motoras/citología , Proteínas del Tejido Nervioso/metabolismo , Netrinas , Isoformas de Proteínas , Transporte de Proteínas/genética , Vesículas Sinápticas/genética
2.
Proc Natl Acad Sci U S A ; 113(8): E1082-8, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26711989

RESUMEN

We present an imaging system for pan-neuronal recording in crawling Caenorhabditis elegans. A spinning disk confocal microscope, modified for automated tracking of the C. elegans head ganglia, simultaneously records the activity and position of ∼80 neurons that coexpress cytoplasmic calcium indicator GCaMP6s and nuclear localized red fluorescent protein at 10 volumes per second. We developed a behavioral analysis algorithm that maps the movements of the head ganglia to the animal's posture and locomotion. Image registration and analysis software automatically assigns an index to each nucleus and calculates the corresponding calcium signal. Neurons with highly stereotyped positions can be associated with unique indexes and subsequently identified using an atlas of the worm nervous system. To test our system, we analyzed the brainwide activity patterns of moving worms subjected to thermosensory inputs. We demonstrate that our setup is able to uncover representations of sensory input and motor output of individual neurons from brainwide dynamics. Our imaging setup and analysis pipeline should facilitate mapping circuits for sensory to motor transformation in transparent behaving animals such as C. elegans and Drosophila larva.


Asunto(s)
Caenorhabditis elegans , Núcleo Celular/metabolismo , Ganglios de Invertebrados , Locomoción , Neuronas , Imagen Óptica/métodos , Animales , Conducta Animal , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Ganglios de Invertebrados/citología , Ganglios de Invertebrados/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteína Fluorescente Roja
3.
Proc Natl Acad Sci U S A ; 112(2): E220-9, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25550513

RESUMEN

Complex animal behaviors are built from dynamical relationships between sensory inputs, neuronal activity, and motor outputs in patterns with strategic value. Connecting these patterns illuminates how nervous systems compute behavior. Here, we study Drosophila larva navigation up temperature gradients toward preferred temperatures (positive thermotaxis). By tracking the movements of animals responding to fixed spatial temperature gradients or random temperature fluctuations, we calculate the sensitivity and dynamics of the conversion of thermosensory inputs into motor responses. We discover three thermosensory neurons in each dorsal organ ganglion (DOG) that are required for positive thermotaxis. Random optogenetic stimulation of the DOG thermosensory neurons evokes behavioral patterns that mimic the response to temperature variations. In vivo calcium and voltage imaging reveals that the DOG thermosensory neurons exhibit activity patterns with sensitivity and dynamics matched to the behavioral response. Temporal processing of temperature variations carried out by the DOG thermosensory neurons emerges in distinct motor responses during thermotaxis.


Asunto(s)
Conducta Animal/fisiología , Drosophila melanogaster/fisiología , Termorreceptores/fisiología , Animales , Animales Modificados Genéticamente , Señalización del Calcio , Ganglios/fisiología , Larva/fisiología , Locomoción/fisiología , Optogenética , Sensación Térmica/fisiología
4.
Proc Natl Acad Sci U S A ; 111(7): 2776-81, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24550307

RESUMEN

The nematode Caenorhabditis elegans navigates toward a preferred temperature setpoint (Ts) determined by long-term temperature exposure. During thermotaxis, the worm migrates down temperature gradients at temperatures above Ts (negative thermotaxis) and performs isothermal tracking near Ts. Under some conditions, the worm migrates up temperature gradients below Ts (positive thermotaxis). Here, we analyze positive and negative thermotaxis toward Ts to study the role of specific neurons that have been proposed to be involved in thermotaxis using genetic ablation, behavioral tracking, and calcium imaging. We find differences in the strategies for positive and negative thermotaxis. Negative thermotaxis is achieved through biasing the frequency of reorientation maneuvers (turns and reversal turns) and biasing the direction of reorientation maneuvers toward colder temperatures. Positive thermotaxis, in contrast, biases only the direction of reorientation maneuvers toward warmer temperatures. We find that the AFD thermosensory neuron drives both positive and negative thermotaxis. The AIY interneuron, which is postsynaptic to AFD, may mediate the switch from negative to positive thermotaxis below Ts. We propose that multiple thermotactic behaviors, each defined by a distinct set of sensorimotor transformations, emanate from the AFD thermosensory neurons. AFD learns and stores the memory of preferred temperatures, detects temperature gradients, and drives the appropriate thermotactic behavior in each temperature regime by the flexible use of downstream circuits.


Asunto(s)
Caenorhabditis elegans/fisiología , Memoria a Largo Plazo/fisiología , Modelos Neurológicos , Movimiento/fisiología , Neuronas/fisiología , Sensación Térmica/fisiología , Animales , Temperatura
5.
Proc Natl Acad Sci U S A ; 110(40): E3868-77, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24043822

RESUMEN

The avoidance of light by fly larvae is a classic paradigm for sensorimotor behavior. Here, we use behavioral assays and video microscopy to quantify the sensorimotor structure of phototaxis using the Drosophila larva. Larval locomotion is composed of sequences of runs (periods of forward movement) that are interrupted by abrupt turns, during which the larva pauses and sweeps its head back and forth, probing local light information to determine the direction of the successive run. All phototactic responses are mediated by the same set of sensorimotor transformations that require temporal processing of sensory inputs. Through functional imaging and genetic inactivation of specific neurons downstream of the sensory periphery, we have begun to map these sensorimotor circuits into the larval central brain. We find that specific sensorimotor pathways that govern distinct light-evoked responses begin to segregate at the first relay after the photosensory neurons.


Asunto(s)
Algoritmos , Drosophila/fisiología , Luz , Modelos Biológicos , Movimiento/fisiología , Vías Nerviosas/fisiología , Animales , Larva/fisiología , Microscopía Confocal , Microscopía Fluorescente , Movimiento/efectos de la radiación
6.
Front Mol Neurosci ; 16: 1275469, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965044

RESUMEN

The surrounding thermal environment is highly important for the survival and fitness of animals, and as a result most exhibit behavioral and neural responses to temperature changes. We study signals generated by thermosensory neurons in Drosophila larvae and also the physical and sensory effects of temperature variation on locomotion and navigation. In particular we characterize how sensory neuronal and behavioral responses to temperature variation both change across the development of the larva. Looking at a wide range of non-nociceptive isotropic thermal environments, we characterize the dependence of speed, turning rate, and other behavioral components on temperature, distinguishing the physical effects of temperature from behavior changes based on sensory processing. We also characterize the strategies larvae use to modulate individual behavioral components to produce directed navigation along thermal gradients, and how these strategies change during physical development. Simulations based on modified random walks show where thermotaxis in each developmental stage fits into the larger context of possible navigation strategies. We also investigate cool sensing neurons in the larva's dorsal organ ganglion, characterizing neural response to sine-wave modulation of temperature while performing single-cell-resolution 3D imaging. We determine the sensitivity of these neurons, which produce signals in response to extremely small temperature changes. Combining thermotaxis results with neurophysiology data, we observe, across development, sensitivity to temperature change as low as a few thousandths of a °C per second, or a few hundredths of a °C in absolute temperature change.

7.
Elife ; 122023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37855833

RESUMEN

How animals respond to repeatedly applied stimuli, and how animals respond to mechanical stimuli in particular, are important questions in behavioral neuroscience. We study adaptation to repeated mechanical agitation using the Drosophila larva. Vertical vibration stimuli elicit a discrete set of responses in crawling larvae: continuation, pause, turn, and reversal. Through high-throughput larva tracking, we characterize how the likelihood of each response depends on vibration intensity and on the timing of repeated vibration pulses. By examining transitions between behavioral states at the population and individual levels, we investigate how the animals habituate to the stimulus patterns. We identify time constants associated with desensitization to prolonged vibration, with re-sensitization during removal of a stimulus, and additional layers of habituation that operate in the overall response. Known memory-deficient mutants exhibit distinct behavior profiles and habituation time constants. An analogous simple electrical circuit suggests possible neural and molecular processes behind adaptive behavior.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Larva/fisiología , Vibración , Habituación Psicofisiológica/fisiología , Drosophila melanogaster/fisiología
8.
Elife ; 122023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37535068

RESUMEN

Detailed descriptions of behavior provide critical insight into the structure and function of nervous systems. In Drosophila larvae and many other systems, short behavioral experiments have been successful in characterizing rapid responses to a range of stimuli at the population level. However, the lack of long-term continuous observation makes it difficult to dissect comprehensive behavioral dynamics of individual animals and how behavior (and therefore the nervous system) develops over time. To allow for long-term continuous observations in individual fly larvae, we have engineered a robotic instrument that automatically tracks and transports larvae throughout an arena. The flexibility and reliability of its design enables controlled stimulus delivery and continuous measurement over developmental time scales, yielding an unprecedented level of detailed locomotion data. We utilize the new system's capabilities to perform continuous observation of exploratory search behavior over a duration of 6 hr with and without a thermal gradient present, and in a single larva for over 30 hr. Long-term free-roaming behavior and analogous short-term experiments show similar dynamics that take place at the beginning of each experiment. Finally, characterization of larval thermotaxis in individuals reveals a bimodal distribution in navigation efficiency, identifying distinct phenotypes that are obfuscated when only analyzing population averages.


Asunto(s)
Proteínas de Drosophila , Procedimientos Quirúrgicos Robotizados , Animales , Reproducibilidad de los Resultados , Drosophila/fisiología , Proteínas de Drosophila/genética , Fenotipo , Larva/fisiología , Drosophila melanogaster/genética , Locomoción/genética , Conducta Animal
9.
bioRxiv ; 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36909608

RESUMEN

Detailed descriptions of behavior provide critical insight into the structure and function of nervous systems. In Drosophila larvae and many other systems, short behavioral experiments have been successful in characterizing rapid responses to a range of stimuli at the population level. However, the lack of long-term continuous observation makes it difficult to dissect comprehensive behavioral dynamics of individual animals and how behavior (and therefore the nervous system) develops over time. To allow for long-term continuous observations in individual fly larvae, we have engineered a robotic instrument that automatically tracks and transports larvae throughout an arena. The flexibility and reliability of its design enables controlled stimulus delivery and continuous measurement over developmental time scales, yielding an unprecedented level of detailed locomotion data. We utilize the new system’s capabilities to perform continuous observation of exploratory behavior over a duration of six hours with and without a thermal gradient present, and in a single larva for over 30 hours. Long-term free-roaming behavior and analogous short-term experiments show similar dynamics that take place at the beginning of each experiment. Finally, characterization of larval thermotaxis in individuals reveals a bimodal distribution in navigation efficiency, identifying distinct phenotypes that are obfuscated when only analyzing population averages.

10.
Bio Protoc ; 12(7): e4370, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35530512

RESUMEN

Thermotaxis behaviors in C. elegans exhibit experience-dependent plasticity of thermal preference memory. This behavior can be assayed either at population level, on linear temperature gradients, or at the individual animal level, by radial isothermal or microfluidic tracking of orientation. These behaviors are low-throughput as well as variable, due to the inherent sensitivity to environmental perturbations. To facilitate reproducible studies, we describe an updated apparatus design that enables simultaneous runs of three thermal preference assays, instead of single-run assays described previously. By enabling parallel runs of control and experimental conditions, this set-up enables more throughput and rigorous assessment of behavioral variability.

11.
J Vis Exp ; (190)2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36591984

RESUMEN

Research in neuroscience has evolved to use complex imaging and computational tools to extract comprehensive information from data sets. Calcium imaging is a widely used technique that requires sophisticated software to obtain reliable results, but many laboratories struggle to adopt computational methods when updating protocols to meet modern standards. Difficulties arise due to a lack of programming knowledge and paywalls for software. In addition, cells of interest display movements in all directions during calcium imaging. Many approaches have been developed to correct the motion in the lateral (x/y) direction. This paper describes a workflow using a new ImageJ plugin, TrackMate Analysis of Calcium Imaging (TACI), to examine motion on the z-axis in 3D calcium imaging. This software identifies the maximum fluorescence value from all the z-positions a neuron appears in and uses it to represent the neuron's intensity at the corresponding t-position. Therefore, this tool can separate neurons overlapping in the lateral (x/y) direction but appearing on distinct z-planes. As an ImageJ plugin, TACI is a user-friendly, open-source computational tool for 3D calcium imaging analysis. We validated this workflow using fly larval thermosensitive neurons that displayed movements in all directions during temperature fluctuation and a 3D calcium imaging dataset acquired from the fly brain.


Asunto(s)
Calcio , Imagenología Tridimensional , Programas Informáticos , Encéfalo , Neuronas , Procesamiento de Imagen Asistido por Computador/métodos
12.
Elife ; 102021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33759761

RESUMEN

Glia in the central nervous system engulf neuron fragments to remodel synapses and recycle photoreceptor outer segments. Whether glia passively clear shed neuronal debris or actively prune neuron fragments is unknown. How pruning of single-neuron endings impacts animal behavior is also unclear. Here, we report our discovery of glia-directed neuron pruning in Caenorhabditis elegans. Adult C. elegans AMsh glia engulf sensory endings of the AFD thermosensory neuron by repurposing components of the conserved apoptotic corpse phagocytosis machinery. The phosphatidylserine (PS) flippase TAT-1/ATP8A functions with glial PS-receptor PSR-1/PSR and PAT-2/α-integrin to initiate engulfment. This activates glial CED-10/Rac1 GTPase through the ternary GEF complex of CED-2/CrkII, CED-5/DOCK180, CED-12/ELMO. Execution of phagocytosis uses the actin-remodeler WSP-1/nWASp. This process dynamically tracks AFD activity and is regulated by temperature, the AFD sensory input. Importantly, glial CED-10 levels regulate engulfment rates downstream of neuron activity, and engulfment-defective mutants exhibit altered AFD-ending shape and thermosensory behavior. Our findings reveal a molecular pathway underlying glia-dependent engulfment in a peripheral sense-organ and demonstrate that glia actively engulf neuron fragments, with profound consequences on neuron shape and animal sensory behavior.


Neurons are tree-shaped cells that receive information through endings connected to neighbouring cells or the environment. Controlling the size, number and location of these endings is necessary to ensure that circuits of neurons get precisely the right amount of input from their surroundings. Glial cells form a large portion of the nervous system, and they are tasked with supporting, cleaning and protecting neurons. In humans, part of their duties is to 'eat' (or prune) unnecessary neuron endings. In fact, this role is so important that defects in glial pruning are associated with conditions such as Alzheimer's disease. Yet it is still unknown how pruning takes place, and in particular whether it is the neuron or the glial cell that initiates the process. To investigate this question, Raiders et al. enlisted the common laboratory animal Caenorhabditis elegans, a tiny worm with a simple nervous system where each neuron has been meticulously mapped out. First, the experiments showed that glial cells in C. elegans actually prune the endings of sensory neurons. Focusing on a single glia-neuron pair then revealed that the glial cell could trim the endings of a living neuron by redeploying the same molecular machinery it uses to clear dead cell debris. Compared to this debris-clearing activity, however, the glial cell takes a more nuanced approach to pruning: specifically, it can adjust the amount of trimming based on the activity load of the neuron. When Raiders et al. disrupted the glial pruning for a single temperature-sensing neuron, the worm lost its normal temperature preferences; this demonstrated how the pruning activity of a single glial cell can be linked to behavior. Taken together the experiments showcase how C. elegans can be used to study glial pruning. Further work using this model could help to understand how disease emerges when glial cells cannot perform their role, and to spot the genetic factors that put certain individuals at increased risk for neurological and sensory disorders.


Asunto(s)
Conducta Animal/fisiología , Caenorhabditis elegans/fisiología , Neuroglía/fisiología , Fagocitosis , Células Receptoras Sensoriales/fisiología , Animales
13.
Sci Adv ; 7(35)2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34452914

RESUMEN

Body temperature homeostasis is essential and reliant upon the integration of outputs from multiple classes of cooling- and warming-responsive cells. The computations that integrate these outputs are not understood. Here, we discover a set of warming cells (WCs) and show that the outputs of these WCs combine with previously described cooling cells (CCs) in a cross-inhibition computation to drive thermal homeostasis in larval Drosophila WCs and CCs detect temperature changes using overlapping combinations of ionotropic receptors: Ir68a, Ir93a, and Ir25a for WCs and Ir21a, Ir93a, and Ir25a for CCs. WCs mediate avoidance to warming while cross-inhibiting avoidance to cooling, and CCs mediate avoidance to cooling while cross-inhibiting avoidance to warming. Ambient temperature-dependent regulation of the strength of WC- and CC-mediated cross-inhibition keeps larvae near their homeostatic set point. Using neurophysiology, quantitative behavioral analysis, and connectomics, we demonstrate how flexible integration between warming and cooling pathways can orchestrate homeostatic thermoregulation.

14.
G3 (Bethesda) ; 10(1): 43-55, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31694853

RESUMEN

Locomotion is an ancient and fundamental output of the nervous system required for animals to perform many other complex behaviors. Although the formation of motor circuits is known to be under developmental control of transcriptional mechanisms that define the fates and connectivity of the many neurons, glia and muscle constituents of these circuits, relatively little is known about the role of post-transcriptional regulation of locomotor behavior. MicroRNAs have emerged as a potentially rich source of modulators for neural development and function. In order to define the microRNAs required for normal locomotion in Drosophila melanogaster, we utilized a set of transgenic Gal4-dependent competitive inhibitors (microRNA sponges, or miR-SPs) to functionally assess ca. 140 high-confidence Drosophila microRNAs using automated quantitative movement tracking systems followed by multiparametric analysis. Using ubiquitous expression of miR-SP constructs, we identified a large number of microRNAs that modulate aspects of normal baseline adult locomotion. Addition of temperature-dependent Gal80 to identify microRNAs that act during adulthood revealed that the majority of these microRNAs play developmental roles. Comparison of ubiquitous and neural-specific miR-SP expression suggests that most of these microRNAs function within the nervous system. Parallel analyses of spontaneous locomotion in adults and in larvae also reveal that very few of the microRNAs required in the adult overlap with those that control the behavior of larval motor circuits. These screens suggest that a rich regulatory landscape underlies the formation and function of motor circuits and that many of these mechanisms are stage and/or parameter-specific.


Asunto(s)
Locomoción/genética , MicroARNs/genética , Animales , Drosophila melanogaster , Ganglios de Invertebrados/metabolismo , MicroARNs/metabolismo
15.
Sci Adv ; 5(2): eaau5902, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30775434

RESUMEN

Understanding how systems with many semi-autonomous parts reach a desired target is a key question in biology (e.g., Drosophila larvae seeking food), engineering (e.g., driverless navigation), medicine (e.g., reliable movement for brain-damaged individuals), and socioeconomics (e.g., bottom-up goal-driven human organizations). Centralized systems perform better with better components. Here, we show, by contrast, that a decentralized entity is more efficient at reaching a target when its components are less capable. Our findings reproduce experimental results for a living organism, predict that autonomous vehicles may perform better with simpler components, offer a fresh explanation for why biological evolution jumped from decentralized to centralized design, suggest how efficient movement might be achieved despite damaged centralized function, and provide a formula predicting the optimum capability of a system's components so that it comes as close as possible to its target or goal.


Asunto(s)
Modelos Teóricos , Algoritmos
16.
Mol Autism ; 10: 3, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30733854

RESUMEN

Background and aims: Autism spectrum disorder (ASD) is currently estimated to affect more than 1% of the world population. For people with ASD, gastrointestinal (GI) distress is a commonly reported but a poorly understood co-occurring symptom. Here, we investigate the physiological basis for GI distress in ASD by studying gut function in a zebrafish model of Phelan-McDermid syndrome (PMS), a condition caused by mutations in the SHANK3 gene. Methods: To generate a zebrafish model of PMS, we used CRISPR/Cas9 to introduce clinically related C-terminal frameshift mutations in shank3a and shank3b zebrafish paralogues (shank3abΔC). Because PMS is caused by SHANK3 haploinsufficiency, we assessed the digestive tract (DT) structure and function in zebrafish shank3abΔC+/- heterozygotes. Human SHANK3 mRNA was then used to rescue DT phenotypes in larval zebrafish. Results: Significantly slower rates of DT peristaltic contractions (p < 0.001) with correspondingly prolonged passage time (p < 0.004) occurred in shank3abΔC+/- mutants. Rescue injections of mRNA encoding the longest human SHANK3 isoform into shank3abΔC+/- mutants produced larvae with intestinal bulb emptying similar to wild type (WT), but still deficits in posterior intestinal motility. Serotonin-positive enteroendocrine cells (EECs) were significantly reduced in both shank3abΔC+/- and shank3abΔC-/- mutants (p < 0.05) while enteric neuron counts and overall structure of the DT epithelium, including goblet cell number, were unaffected in shank3abΔC+/- larvae. Conclusions: Our data and rescue experiments support mutations in SHANK3 as causal for GI transit and motility abnormalities. Reductions in serotonin-positive EECs and serotonin-filled ENS boutons suggest an endocrine/neural component to this dysmotility. This is the first study to date demonstrating DT dysmotility in a zebrafish single gene mutant model of ASD.


Asunto(s)
Trastorno Autístico/genética , Motilidad Gastrointestinal , Proteínas del Tejido Nervioso/genética , Proteínas de Pez Cebra/genética , Animales , Trastorno Autístico/fisiopatología , Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/metabolismo , Células Enteroendocrinas/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/citología , Intestinos/crecimiento & desarrollo , Intestinos/fisiología , Mutación , Neuronas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Serotonina/metabolismo , Pez Cebra
17.
Neuron ; 101(4): 738-747.e3, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30654923

RESUMEN

Thermosensation is critical for avoiding thermal extremes and regulating body temperature. While thermosensors activated by noxious temperatures respond to hot or cold, many innocuous thermosensors exhibit robust baseline activity and lack discrete temperature thresholds, suggesting they are not simply warm and cool detectors. Here, we investigate how the aristal Cold Cells encode innocuous temperatures in Drosophila. We find they are not cold sensors but cooling-activated and warming-inhibited phasic thermosensors that operate similarly at warm and cool temperatures; we propose renaming them "Cooling Cells." Unexpectedly, Cooling Cell thermosensing does not require the previously reported Brivido Transient Receptor Potential (TRP) channels. Instead, three Ionotropic Receptors (IRs), IR21a, IR25a, and IR93a, specify both the unique structure of Cooling Cell cilia endings and their thermosensitivity. Behaviorally, Cooling Cells promote both warm and cool avoidance. These findings reveal a morphogenetic role for IRs and demonstrate the central role of phasic thermosensing in innocuous thermosensation. VIDEO ABSTRACT.


Asunto(s)
Proteínas de Drosophila/metabolismo , Neurogénesis , Receptores Ionotrópicos de Glutamato/metabolismo , Células Receptoras Sensoriales/metabolismo , Sensación Térmica , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Receptores Ionotrópicos de Glutamato/genética , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/fisiología , Termotolerancia
18.
Elife ; 62017 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-29083306

RESUMEN

Many organisms-from bacteria to nematodes to insect larvae-navigate their environments by biasing random movements. In these organisms, navigation in isotropic environments can be characterized as an essentially diffusive and undirected process. In stimulus gradients, movement decisions are biased to drive directed navigation toward favorable environments. How does directed navigation in a gradient modulate random exploration either parallel or orthogonal to the gradient? Here, we introduce methods originally used for analyzing protein folding trajectories to study the trajectories of the nematode Caenorhabditis elegans and the Drosophila larva in isotropic environments, as well as in thermal and chemical gradients. We find that the statistics of random exploration in any direction are little affected by directed movement along a stimulus gradient. A key constraint on the behavioral strategies of these organisms appears to be the preservation of their capacity to continuously explore their environments in all directions even while moving toward favorable conditions.


Asunto(s)
Caenorhabditis elegans/fisiología , Drosophila/fisiología , Animales , Conducta Animal , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/efectos de la radiación , Drosophila/efectos de los fármacos , Drosophila/efectos de la radiación , Conducta Exploratoria , Larva/fisiología , Locomoción , Temperatura
19.
Elife ; 52016 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-27126188

RESUMEN

Animals rely on highly sensitive thermoreceptors to seek out optimal temperatures, but the molecular mechanisms of thermosensing are not well understood. The Dorsal Organ Cool Cells (DOCCs) of the Drosophila larva are a set of exceptionally thermosensitive neurons critical for larval cool avoidance. Here, we show that DOCC cool-sensing is mediated by Ionotropic Receptors (IRs), a family of sensory receptors widely studied in invertebrate chemical sensing. We find that two IRs, IR21a and IR25a, are required to mediate DOCC responses to cooling and are required for cool avoidance behavior. Furthermore, we find that ectopic expression of IR21a can confer cool-responsiveness in an Ir25a-dependent manner, suggesting an instructive role for IR21a in thermosensing. Together, these data show that IR family receptors can function together to mediate thermosensation of exquisite sensitivity.


Asunto(s)
Frío , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Drosophila/efectos de la radiación , Receptores Ionotrópicos de Glutamato/metabolismo , Sensación Térmica , Animales , Conducta Animal
20.
Elife ; 52016 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-27656904

RESUMEN

Ionotropic Receptors (IRs) are a large subfamily of variant ionotropic glutamate receptors present across Protostomia. While these receptors are most extensively studied for their roles in chemosensory detection, recent work has implicated two family members, IR21a and IR25a, in thermosensation in Drosophila. Here we characterize one of the most evolutionarily deeply conserved receptors, IR93a, and show that it is co-expressed and functions with IR21a and IR25a to mediate physiological and behavioral responses to cool temperatures. IR93a is also co-expressed with IR25a and a distinct receptor, IR40a, in a discrete population of sensory neurons in the sacculus, a multi-chambered pocket within the antenna. We demonstrate that this combination of receptors is required for neuronal responses to dry air and behavioral discrimination of humidity differences. Our results identify IR93a as a common component of molecularly and cellularly distinct IR pathways important for thermosensation and hygrosensation in insects.


Asunto(s)
Frío , Drosophila melanogaster/fisiología , Humedad , Receptores Ionotrópicos de Glutamato/metabolismo , Animales , Conducta Animal , Proteínas de Drosophila , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/efectos de la radiación , Proteínas de la Membrana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA