Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Eur Biophys J ; 52(6-7): 607-618, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37831084

RESUMEN

Intrinsically disordered proteins (IDPs) form an important class of biomolecules regulating biological processes in higher organisms. The lack of a fixed spatial structure facilitates them to perform their regulatory functions and allows the efficiency of biochemical reactions to be controlled by temperature and the cellular environment. From the biophysical point of view, IDPs are biopolymers with a broad configuration state space and their actual conformation depends on non-covalent interactions of its amino acid side chain groups at given temperature and chemical conditions. Thus, the hydrodynamic radius (Rh) of an IDP of a given polymer length (N) is a sequence- and environment-dependent variable. We have reviewed the literature values of hydrodynamic radii of IDPs determined experimentally by SEC, AUC, PFG NMR, DLS, and FCS, and complement them with our FCS results obtained for a series of protein fragments involved in the regulation of human gene expression. The data collected herein show that the values of hydrodynamic radii of IDPs can span the full space between the folded globular and denatured proteins in the Rh(N) diagram.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Humanos , Proteínas Intrínsecamente Desordenadas/química , Radio (Anatomía)/metabolismo , Hidrodinámica , Espectroscopía de Resonancia Magnética , Temperatura , Conformación Proteica
2.
J Phys Chem Lett ; 15(19): 5024-5033, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38696815

RESUMEN

The diffusion coefficients of globular and fully unfolded proteins can be predicted with high accuracy solely from their mass or chain length. However, this approach fails for intrinsically disordered proteins (IDPs) containing structural domains. We propose a rapid predictive methodology for estimating the diffusion coefficients of IDPs. The methodology uses accelerated conformational sampling based on self-avoiding random walks and includes hydrodynamic interactions between coarse-grained protein subunits, modeled using the generalized Rotne-Prager-Yamakawa approximation. To estimate the hydrodynamic radius, we rely on the minimum dissipation approximation recently introduced by Cichocki et al. Using a large set of experimentally measured hydrodynamic radii of IDPs over a wide range of chain lengths and domain contributions, we demonstrate that our predictions are more accurate than the Kirkwood approximation and phenomenological approaches. Our technique may prove to be valuable in predicting the hydrodynamic properties of both fully unstructured and multidomain disordered proteins.


Asunto(s)
Hidrodinámica , Proteínas Intrínsecamente Desordenadas , Proteínas Intrínsecamente Desordenadas/química , Difusión , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA