Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 167(3): 816-828.e16, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27745969

RESUMEN

tRNA is a central component of protein synthesis and the cell signaling network. One salient feature of tRNA is its heavily modified status, which can critically impact its function. Here, we show that mammalian ALKBH1 is a tRNA demethylase. It mediates the demethylation of N1-methyladenosine (m1A) in tRNAs. The ALKBH1-catalyzed demethylation of the target tRNAs results in attenuated translation initiation and decreased usage of tRNAs in protein synthesis. This process is dynamic and responds to glucose availability to affect translation. Our results uncover reversible methylation of tRNA as a new mechanism of post-transcriptional gene expression regulation.


Asunto(s)
Histona H2a Dioxigenasa, Homólogo 1 de AlkB/metabolismo , Regulación de la Expresión Génica , Biosíntesis de Proteínas/genética , ARN de Transferencia/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/genética , Glucosa/deficiencia , Células HeLa , Humanos , Metilación , Polirribosomas/metabolismo
3.
Mol Cell ; 71(6): 973-985.e5, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30197295

RESUMEN

FTO, the first RNA demethylase discovered, mediates the demethylation of internal N6-methyladenosine (m6A) and N6, 2-O-dimethyladenosine (m6Am) at the +1 position from the 5' cap in mRNA. Here we demonstrate that the cellular distribution of FTO is distinct among different cell lines, affecting the access of FTO to different RNA substrates. We find that FTO binds multiple RNA species, including mRNA, snRNA, and tRNA, and can demethylate internal m6A and cap m6Am in mRNA, internal m6A in U6 RNA, internal and cap m6Am in snRNAs, and N1-methyladenosine (m1A) in tRNA. FTO-mediated demethylation has a greater effect on the transcript levels of mRNAs possessing internal m6A than the ones with cap m6Am in the tested cells. We also show that FTO can directly repress translation by catalyzing m1A tRNA demethylation. Collectively, FTO-mediated RNA demethylation occurs to m6A and m6Am in mRNA and snRNA as well as m1A in tRNA.


Asunto(s)
Adenosina/análogos & derivados , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/fisiología , Células 3T3-L1 , Adenosina/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Animales , Núcleo Celular , Citoplasma , Desmetilación , Expresión Génica/genética , Células HEK293 , Células HeLa , Humanos , Metilación , Ratones , Procesamiento Postranscripcional del ARN/fisiología , ARN Mensajero/metabolismo , ARN Nuclear Pequeño/metabolismo , ARN de Transferencia/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(32): e2201328119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914175

RESUMEN

Cellular quiescence is a state of reversible cell cycle arrest that is associated with tissue dormancy. Timely regulated entry into and exit from quiescence is important for processes such as tissue homeostasis, tissue repair, stem cell maintenance, developmental processes, and immunity. However, little is known about processes that control the mechanical adaption to cell behavior changes during the transition from quiescence to proliferation. Here, we show that quiescent human keratinocyte monolayers sustain an actinomyosin-based system that facilitates global cell sheet displacements upon serum-stimulated exit from quiescence. Mechanistically, exposure of quiescent cells to serum-borne mitogens leads to rapid amplification of preexisting contractile sites, leading to a burst in monolayer tension that subsequently drives large-scale displacements of otherwise motility-restricted monolayers. The stress level after quiescence exit correlates with the level of quiescence depth at the time of activation, and a critical stress magnitude must be reached to overcome the cell sheet displacement barrier. The study shows that static quiescent cell monolayers are mechanically poised for motility, and it identifies global stress amplification as a mechanism for overcoming motility restrictions in confined confluent cell monolayers.


Asunto(s)
Ciclo Celular , Homeostasis , Queratinocitos , Ciclo Celular/fisiología , División Celular , Proliferación Celular , Humanos , Queratinocitos/citología
5.
J Cell Sci ; 135(11)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35552718

RESUMEN

Establishment of the pluripotency regulatory network in somatic cells by introducing four transcription factors [octamer binding transcription factor 4 (OCT4; also known as POU5F1), sex determining region Y (SRY)-box 2 (SOX2), Kruppel-like factor 4 (KLF4) and cellular myelocytomatosis (c-MYC)] provides a promising tool for cell-based therapies in regenerative medicine. Nevertheless, the mechanisms at play when generating induced pluripotent stem cells from somatic cells are only partly understood. Here, we show that the RNA-specific N6-methyladenosine (m6A) demethylase ALKBH5 regulates somatic cell reprogramming in a stage-specific manner through its catalytic activity. Knockdown or knockout of Alkbh5 in the early reprogramming phase impairs reprogramming efficiency by reducing the proliferation rate through arresting the cells at G2/M phase and decreasing the upregulation of epithelial markers. On the other hand, ALKBH5 overexpression at the early reprogramming phase has no significant impact on reprogramming efficiency, whereas overexpression at the late phase enhances reprogramming by stabilizing Nanog transcripts, resulting in upregulated Nanog expression. Our study provides mechanistic insight into the crucial dynamic role of ALKBH5, mediated through its catalytic activity, in regulating somatic cell reprogramming at the post-transcriptional level. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Diferenciación Celular/fisiología , Reprogramación Celular/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factores de Transcripción SOXB1/genética
6.
Nucleic Acids Res ; 50(3): 1351-1369, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35100417

RESUMEN

Tight control of gene expression networks required for adipose tissue formation and plasticity is essential for adaptation to energy needs and environmental cues. However, the mechanisms that orchestrate the global and dramatic transcriptional changes leading to adipocyte differentiation remain to be fully unraveled. We investigated the regulation of nascent transcription by the sumoylation pathway during adipocyte differentiation using SLAMseq and ChIPseq. We discovered that the sumoylation pathway has a dual function in differentiation; it supports the initial downregulation of pre-adipocyte-specific genes, while it promotes the establishment of the mature adipocyte transcriptional program. By characterizing endogenous sumoylome dynamics in differentiating adipocytes by mass spectrometry, we found that sumoylation of specific transcription factors like PPARγ/RXR and their co-factors are associated with the transcription of adipogenic genes. Finally, using RXR as a model, we found that sumoylation may regulate adipogenic transcription by supporting the chromatin occurrence of transcription factors. Our data demonstrate that the sumoylation pathway supports the rewiring of transcriptional networks required for formation of functional adipocytes. This study also provides the scientists in the field of cellular differentiation and development with an in-depth resource of the dynamics of the SUMO-chromatin landscape, SUMO-regulated transcription and endogenous sumoylation sites during adipocyte differentiation.


Asunto(s)
Adipogénesis , Sumoilación , Adipocitos/metabolismo , Adipogénesis/genética , Diferenciación Celular/genética , Cromatina/genética , Cromatina/metabolismo , Factores de Transcripción/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34921114

RESUMEN

N6-methyladenosine (m6A) deposition on messenger RNA (mRNA) controls embryonic stem cell (ESC) fate by regulating the mRNA stabilities of pluripotency and lineage transcription factors (TFs) [P. J. Batista et al., Cell Stem Cell 15, 707-719 (2014); Y. Wang et al., Nat. Cell Biol. 16, 191-198 (2014); and S. Geula et al., Science 347, 1002-1006 (2015)]. If the mRNAs of these two TF groups become stabilized, it remains unclear how the pluripotency or lineage commitment decision is implemented. We performed noninvasive quantification of Nanog and Oct4 TF protein levels in reporter ESCs to define cell-state dynamics at single-cell resolution. Long-term single-cell tracking shows that immediate m6A depletion by Mettl3 knock-down in serum/leukemia inhibitory factor supports both pluripotency maintenance and its departure. This is mediated by differential and opposing signaling pathways. Increased FGF5 mRNA stability activates pErk, leading to Nanog down-regulation. FGF5-mediated coactivation of pAkt reenforces Nanog expression. In formative stem cells poised toward differentiation, m6A depletion activates both pErk and pAkt, increasing the propensity for mesendodermal lineage induction. Stable m6A depletion by Mettl3 knock-out also promotes pErk activation. Higher pErk counteracts the pluripotency exit delay exhibited by stably m6A-depleted cells upon differentiation. At single-cell resolution, we illustrate that decreasing m6A abundances activates pErk and pAkt-signaling, regulating pluripotency departure.


Asunto(s)
Adenosina/análogos & derivados , Células Madre Embrionarias/fisiología , Sistema de Señalización de MAP Quinasas , Adenosina/metabolismo , Animales , Línea Celular , Estratos Germinativos/citología , Ratones
8.
Reproduction ; 165(1): R1-R8, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36194446

RESUMEN

In brief: RNA modifications play key roles in regulating various biological processes. This article discusses and summarizes the recent advances of RNA m6A modifications related to mammalian gametogenesis, early embryonic development, and miscarriage. Abstract: The epitranscriptome is defined as the collection of post-transcriptional chemical modifications of RNA in a cell. RNA methylation refers to the chemical post-transcriptional modification of RNA by selectively adding methyl groups under the catalysis of a methyltransferase. The N6 methyladenosine (m6A) is one of the most common of the more than 100 known RNA modifications. Recent research has revealed that RNA m6A modifications are reversible. Additionally, m6A containing RNA can be selectively identified by immunoprecipitation followed by high-throughput sequencing (MeRIP-SEQ). These two developments have inspired a tremendous effort to unravel the biological role of m6A. The role of RNA m6A modifications in immune regulation, cell division, stem cell renewal, gametogenesis, embryonic development, and placental function has gradually emerged, which is of great significance for the study of post-transcriptional regulation of gene expression in reproductive biology. This review summarizes the current knowledge about RNA m6A modification in a variety of mammalian reproductive events.


Asunto(s)
Fenómenos Biológicos , Placenta , Embarazo , Animales , Femenino , Placenta/metabolismo , Metilación , ARN , Mamíferos/genética , Mamíferos/metabolismo , Gametogénesis
9.
Genes Dev ; 29(19): 2037-53, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26404942

RESUMEN

We adapted UV CLIP (cross-linking immunoprecipitation) to accurately locate tens of thousands of m(6)A residues in mammalian mRNA with single-nucleotide resolution. More than 70% of these residues are present in the 3'-most (last) exons, with a very sharp rise (sixfold) within 150-400 nucleotides of the start of the last exon. Two-thirds of last exon m(6)A and >40% of all m(6)A in mRNA are present in 3' untranslated regions (UTRs); contrary to earlier suggestions, there is no preference for location of m(6)A sites around stop codons. Moreover, m(6)A is significantly higher in noncoding last exons than in next-to-last exons harboring stop codons. We found that m(6)A density peaks early in the 3' UTR and that, among transcripts with alternative polyA (APA) usage in both the brain and the liver, brain transcripts preferentially use distal polyA sites, as reported, and also show higher proximal m(6)A density in the last exons. Furthermore, when we reduced m6A methylation by knocking down components of the methylase complex and then examined 661 transcripts with proximal m6A peaks in last exons, we identified a set of 111 transcripts with altered (approximately two-thirds increased proximal) APA use. Taken together, these observations suggest a role of m(6)A modification in regulating proximal alternative polyA choice.


Asunto(s)
Regiones no Traducidas 3'/genética , Adenosina/metabolismo , Metilación de ADN/genética , Exones/genética , Regulación de la Expresión Génica , ARN Mensajero/química , Animales , Encéfalo/citología , Encéfalo/metabolismo , Línea Celular , Técnicas de Silenciamiento del Gen , Humanos , Hígado/citología , Hígado/metabolismo , Ratones , Poliadenilación , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
10.
Nature ; 537(7621): 548-552, 2016 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-27626377

RESUMEN

Maternal-to-zygotic transition (MZT) is essential for the formation of a new individual, but is still poorly understood despite recent progress in analysis of gene expression and DNA methylation in early embryogenesis. Dynamic histone modifications may have important roles in MZT, but direct measurements of chromatin states have been hindered by technical difficulties in profiling histone modifications from small quantities of cells. Recent improvements allow for 500 cell-equivalents of chromatin per reaction, but require 10,000 cells for initial steps or require a highly specialized microfluidics device that is not readily available. We developed a micro-scale chromatin immunoprecipitation and sequencing (µChIP-seq) method, which we used to profile genome-wide histone H3 lysine methylation (H3K4me3) and acetylation (H3K27ac) in mouse immature and metaphase II oocytes and in 2-cell and 8-cell embryos. Notably, we show that ~22% of the oocyte genome is associated with broad H3K4me3 domains that are anti-correlated with DNA methylation. The H3K4me3 signal becomes confined to transcriptional-start-site regions in 2-cell embryos, concomitant with the onset of major zygotic genome activation. Active removal of broad H3K4me3 domains by the lysine demethylases KDM5A and KDM5B is required for normal zygotic genome activation and is essential for early embryo development. Our results provide insight into the onset of the developmental program in mouse embryos and demonstrate a role for broad H3K4me3 domains in MZT.


Asunto(s)
Cromatina/metabolismo , Metilación de ADN , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Lisina/metabolismo , Oocitos/metabolismo , Cigoto/metabolismo , Acetilación , Animales , Línea Celular Tumoral , Cromatina/genética , Inmunoprecipitación de Cromatina , Desarrollo Embrionario/genética , Femenino , Genoma/genética , Histonas/química , Humanos , Masculino , Metilación , Ratones , Análisis de Secuencia de ADN , Sitio de Iniciación de la Transcripción , Cigoto/citología
11.
Nucleic Acids Res ; 48(8): 4463-4479, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32083667

RESUMEN

Endonuclease V (EndoV) is a conserved inosine-specific ribonuclease with unknown biological function. Here, we present the first mouse model lacking EndoV, which is viable without visible abnormalities. We show that endogenous murine EndoV cleaves inosine-containing RNA in vitro, nevertheless a series of experiments fails to link an in vivo function to processing of such transcripts. As inosine levels and adenosine-to-inosine editing often are dysregulated in hepatocellular carcinoma (HCC), we chemically induced HCC in mice. All mice developed liver cancer, however, EndoV-/- tumors were significantly fewer and smaller than wild type tumors. Opposed to human HCC, adenosine deaminase mRNA expression and site-specific editing were unaltered in our model. Loss of EndoV did not affect editing levels in liver tumors, however mRNA expression of a selection of cancer related genes were reduced. Inosines are also found in certain tRNAs and tRNAs are cleaved during stress to produce signaling entities. tRNA fragmentation was dysregulated in EndoV-/- livers and apparently, inosine-independent. We speculate that the inosine-ribonuclease activity of EndoV is disabled in vivo, but RNA binding allowed to promote stabilization of transcripts or recruitment of proteins to fine-tune gene expression. The EndoV-/- tumor suppressive phenotype calls for related studies in human HCC.


Asunto(s)
Desoxirribonucleasa (Dímero de Pirimidina)/genética , Neoplasias Hepáticas Experimentales/genética , Adenosina/metabolismo , Animales , Antineoplásicos/farmacología , Carcinogénesis , Línea Celular , Desoxirribonucleasa (Dímero de Pirimidina)/metabolismo , Expresión Génica , Humanos , Inosina/metabolismo , Hígado/metabolismo , Neoplasias Hepáticas Experimentales/inducido químicamente , Neoplasias Hepáticas Experimentales/metabolismo , Neoplasias Hepáticas Experimentales/patología , Ratones Noqueados , Edición de ARN , ARN de Transferencia/metabolismo , Análisis de Secuencia de ARN , Sorafenib/farmacología
12.
Mol Cell ; 49(1): 18-29, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23177736

RESUMEN

N(6)-methyladenosine (m(6)A) is the most prevalent internal modification of messenger RNA (mRNA) in higher eukaryotes. Here we report ALKBH5 as another mammalian demethylase that oxidatively reverses m(6)A in mRNA in vitro and in vivo. This demethylation activity of ALKBH5 significantly affects mRNA export and RNA metabolism as well as the assembly of mRNA processing factors in nuclear speckles. Alkbh5-deficient male mice have increased m(6)A in mRNA and are characterized by impaired fertility resulting from apoptosis that affects meiotic metaphase-stage spermatocytes. In accordance with this defect, we have identified in mouse testes 1,551 differentially expressed genes that cover broad functional categories and include spermatogenesis-related mRNAs involved in the p53 functional interaction network. The discovery of this RNA demethylase strongly suggests that the reversible m(6)A modification has fundamental and broad functions in mammalian cells.


Asunto(s)
Dioxigenasas/metabolismo , Proteínas de la Membrana/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB , Animales , Secuencia de Bases , Núcleo Celular/metabolismo , Dioxigenasas/química , Dioxigenasas/genética , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Infertilidad Masculina/enzimología , Masculino , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Tamaño de los Órganos , Oxidorreductasas N-Desmetilantes/química , Oxidorreductasas N-Desmetilantes/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Interferencia de ARN , ARN Mensajero/química , Espermatogénesis/genética , Testículo/enzimología , Testículo/patología , Transcriptoma
13.
Nucleic Acids Res ; 47(2): 779-793, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30496516

RESUMEN

Uracil arises in DNA by hydrolytic deamination of cytosine (C) and by erroneous incorporation of deoxyuridine monophosphate opposite adenine, where the former event is devastating by generation of C → thymine transitions. The base excision repair (BER) pathway replaces uracil by the correct base. In human cells two uracil-DNA glycosylases (UDGs) initiate BER by excising uracil from DNA; one is hSMUG1 (human single-strand-selective mono-functional UDG). We report that repair initiation by hSMUG1 involves strand incision at the uracil site resulting in a 3'-α,ß-unsaturated aldehyde designated uracil-DNA incision product (UIP), and a 5'-phosphate. UIP is removed from the 3'-end by human apurinic/apyrimidinic (AP) endonuclease 1 preparing for single-nucleotide insertion. hSMUG1 also incises DNA or processes UIP to a 3'-phosphate designated uracil-DNA processing product (UPP). UIP and UPP were indirectly identified and quantified by polyacrylamide gel electrophoresis and chemically characterised by matrix-assisted laser desorption/ionisation time-of-flight mass-spectrometric analysis of DNA from enzyme reactions using 18O- or 16O-water. The formation of UIP accords with an elimination (E2) reaction where deprotonation of C2' occurs via the formation of a C1' enolate intermediate. A three-phase kinetic model explains rapid uracil excision in phase 1, slow unspecific enzyme adsorption/desorption to DNA in phase 2 and enzyme-dependent AP site incision in phase 3.


Asunto(s)
ADN/metabolismo , Uracil-ADN Glicosidasa/metabolismo , Uracilo/metabolismo , ADN/química , División del ADN , Reparación del ADN , Humanos , Cinética , Temperatura
14.
Proc Natl Acad Sci U S A ; 115(2): E325-E333, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29279410

RESUMEN

N6-methyladenosine (m6A) represents one of the most common RNA modifications in eukaryotes. Specific m6A writer, eraser, and reader proteins have been identified. As an m6A eraser, ALKBH5 specifically removes m6A from target mRNAs and inactivation of Alkbh5 leads to male infertility in mice. However, the underlying molecular mechanism remains unknown. Here, we report that ALKBH5-mediated m6A erasure in the nuclei of spermatocytes and round spermatids is essential for correct splicing and the production of longer 3'-UTR mRNAs, and failure to do so leads to aberrant splicing and production of shorter transcripts with elevated levels of m6A that are rapidly degraded. Our study identified reversible m6A modification as a critical mechanism of posttranscriptional control of mRNA fate in late meiotic and haploid spermatogenic cells.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Empalme del ARN/fisiología , Espermatocitos/fisiología , Regiones no Traducidas 3' , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Animales , Desmetilación , Células Germinativas , Masculino , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
15.
Proc Natl Acad Sci U S A ; 114(5): 1039-1044, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28096404

RESUMEN

Maintaining cellular homeostasis under changing nutrient conditions is essential for the growth and development of all organisms. The mechanisms that maintain homeostasis upon loss of nutrient supply are not well understood. By mapping the SUMO proteome in Saccharomyces cerevisiae, we discovered a specific set of differentially sumoylated proteins mainly involved in transcription. RNA polymerase III (RNAPIII) components, including Rpc53, Rpc82, and Ret1, are particularly prominent nutrient-dependent SUMO targets. Nitrogen starvation, as well as direct inhibition of the master nutrient response regulator target of rapamycin complex 1 (TORC1), results in rapid desumoylation of these proteins, which is reflected by loss of SUMO at tRNA genes. TORC1-dependent sumoylation of Rpc82 in particular is required for robust tRNA transcription. Mechanistically, sumoylation of Rpc82 is important for assembly of the RNAPIII holoenzyme and recruitment of Rpc82 to tRNA genes. In conclusion, our data show that TORC1-dependent sumoylation of Rpc82 bolsters the transcriptional capacity of RNAPIII under optimal growth conditions.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Procesamiento Proteico-Postraduccional , ARN Polimerasa III/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Sustitución de Aminoácidos , Ontología de Genes , Nitrógeno/metabolismo , Subunidades de Proteína , ARN de Hongos/biosíntesis , ARN de Hongos/genética , ARN de Transferencia/biosíntesis , ARN de Transferencia/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/efectos de los fármacos , Sirolimus/farmacología , Sumoilación , Factores de Transcripción/efectos de los fármacos , Enzimas Ubiquitina-Conjugadoras/genética
16.
Nat Methods ; 14(1): 18-22, 2016 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-28032624

RESUMEN

Post-transcriptional RNA modifications were discovered several decades ago, but the reversible nature of RNA modifications has only recently been discovered. Owing to technological advances, knowledge of epitranscriptomic marks and their writers, readers and erasers has recently advanced tremendously. Here we focus on the roles of the dynamic methylation and demethylation of internal adenosines in mRNA in germ cells and pluripotent stem cells.


Asunto(s)
Epigénesis Genética/genética , Meiosis/genética , Células Madre Pluripotentes/metabolismo , ARN/química , ARN/genética , Animales , Humanos , Células Madre Pluripotentes/citología
17.
Genome Res ; 25(6): 897-906, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25800674

RESUMEN

Transcription factors are abundant Sumo targets, yet the global distribution of Sumo along the chromatin and its physiological relevance in transcription are poorly understood. Using Saccharomyces cerevisiae, we determined the genome-wide localization of Sumo along the chromatin. We discovered that Sumo-enriched genes are almost exclusively involved in translation, such as tRNA genes and ribosomal protein genes (RPGs). Genome-wide expression analysis showed that Sumo positively regulates their transcription. We also discovered that the Sumo consensus motif at RPG promoters is identical to the DNA binding motif of the transcription factor Rap1. We demonstrate that Rap1 is a molecular target of Sumo and that sumoylation of Rap1 is important for cell viability. Furthermore, Rap1 sumoylation promotes recruitment of the basal transcription machinery, and sumoylation of Rap1 cooperates with the target of rapamycin kinase complex 1 (TORC1) pathway to promote RPG transcription. Strikingly, our data reveal that sumoylation of Rap1 functions in a homeostatic feedback loop that sustains RPG transcription during translational stress. Taken together, Sumo regulates the cellular translational capacity by promoting transcription of tRNA genes and RPGs.


Asunto(s)
ARN de Hongos/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sumoilación , Factor de Transcripción TFIID/genética , Factores de Transcripción/genética , Proteínas de Unión al GTP rap1/genética , Cromatina/genética , Cromatina/metabolismo , Estudios de Asociación Genética , Regiones Promotoras Genéticas , ARN de Hongos/genética , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Unión al GTP rap1/metabolismo
18.
Mol Cell Neurosci ; 77: 47-52, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27751903

RESUMEN

There is a constitutive production of water in brain. The efflux routes of this excess water remain to be identified. We used basal brain water content as a proxy for the capacity of water exit routes. Basal brain water content was increased in mice with a complete loss of aquaporin-4 (AQP4) water channels (global Aqp4-/- mice), but not in mice with a selective removal of perivascular AQP4 or in a novel mouse line with a selective deletion of ependymal AQP4 (Foxj1-Cre:Aqp4flox/flox mice). Unique for the global Aqp4-/- mice is the loss of the AQP4 pool subjacent to the pial membrane. Our data suggest that water accumulates in brain when subpial AQP4 is missing, pointing to a critical role of this pool of water channels in brain water exit.


Asunto(s)
Acuaporina 4/metabolismo , Epéndimo/metabolismo , Animales , Acuaporina 4/genética , Astrocitos/metabolismo , Epéndimo/citología , Células Ependimogliales/metabolismo , Ratones , Ratones Endogámicos C57BL , Agua/metabolismo
19.
Cell Physiol Biochem ; 38(1): 173-84, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26765775

RESUMEN

BACKGROUND/AIMS: ALKBH1, an AlkB homologue in the 2-oxoglutarate and Fe2+ dependent hydroxylase family, is a histone dioxygenase that removes methyl groups from histone H2A. Studies of transgenic mice lacking Alkbh1 reveal that most Alkbh1-/- embryos die during embryonic development. Embryonic stem cells (ESCs) derived from these mice have prolonged expression of pluripotency markers and delayed induction of genes involved in neural differentiation, indicating that ALKBH1 is involved in regulation of pluripotency and differentiation. The aim of this study was to further investigate the role ALKBH1 in early development. METHODS: Double-filter methods for nitrocellulose-filter binding, dot blot, enzyme-linked immunosorbent assay (ELISA), immonocytochemistry, cell culture and differentiation of mouse ESCs, Co-IP and miRNA analysis. RESULTS: We found that SOX2 and NANOG bind the ALKBH1 promoter, and we identified protein-protein interactions between ALKBH1 and these core transcription factors of the pluripotency network. Furthermore, lack of ALKBH1 affected the expression of developmentally important miRNAs, which are involved in the regulation of NANOG, SOX2 and neural differentiation. CONCLUSION: Our results suggest that ALKBH1 interacts with the core transcriptional pluripotency network of ESCs and is involved in regulation of pluripotency and differentiation.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Redes Reguladoras de Genes , Factores de Transcripción/metabolismo , Regiones no Traducidas 5' , Histona H2a Dioxigenasa, Homólogo 1 de AlkB , Animales , Secuencia de Bases , Sitios de Unión , Diferenciación Celular , Línea Celular , ADN-(Sitio Apurínico o Apirimidínico) Liasa/deficiencia , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Técnicas de Inactivación de Genes , Proteínas de Homeodominio/química , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , MicroARNs/metabolismo , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/química , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Regiones Promotoras Genéticas , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Factores de Transcripción SOXB1/química , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción/química
20.
Nucleic Acids Res ; 42(21): 13280-93, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25355512

RESUMEN

5-hydroxymethylcytosine (5hmC) has been suggested to be involved in various nucleic acid transactions and cellular processes, including transcriptional regulation, demethylation of 5-methylcytosine and stem cell pluripotency. We have identified an activity that preferentially catalyzes the cleavage of double-stranded 5hmC-modified DNA. Using biochemical methods we purified this activity from mouse liver extracts and demonstrate that the enzyme responsible for the cleavage of 5hmC-modified DNA is Endonuclease G (EndoG). We show that recombinant EndoG preferentially recognizes and cleaves a core sequence when one specific cytosine within that core sequence is hydroxymethylated. Additionally, we provide in vivo evidence that EndoG catalyzes the formation of double-stranded DNA breaks and that this cleavage is dependent upon the core sequence, EndoG and 5hmC. Finally, we demonstrate that the 5hmC modification can promote conservative recombination in an EndoG-dependent manner.


Asunto(s)
Citosina/análogos & derivados , División del ADN , Endodesoxirribonucleasas/metabolismo , Recombinación Genética , 5-Metilcitosina/análogos & derivados , Animales , Dominio Catalítico/genética , Núcleo Celular/enzimología , Citosina/metabolismo , ADN/química , Dioxigenasas/genética , Células HeLa , Histonas/análisis , Humanos , Péptidos y Proteínas de Señalización Intracelular/análisis , Ratones , Ratones Endogámicos C57BL , Proteína 1 de Unión al Supresor Tumoral P53
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA