Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 110(14): 5404-9, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23493549

RESUMEN

The key role played by fucose in glycoprotein and cellular function has prompted significant research toward identifying recombinant and biochemical strategies for blocking its incorporation into proteins and membrane structures. Technologies surrounding engineered cell lines have evolved for the inhibition of in vitro fucosylation, but they are not applicable for in vivo use and drug development. To address this, we screened a panel of fucose analogues and identified 2-fluorofucose and 5-alkynylfucose derivatives that depleted cells of GDP-fucose, the substrate used by fucosyltransferases to incorporate fucose into protein and cellular glycans. The inhibitors were used in vitro to generate fucose-deficient antibodies with enhanced antibody-dependent cellular cytotoxicity activities. When given orally to mice, 2-fluorofucose inhibited fucosylation of endogenously produced antibodies, tumor xenograft membranes, and neutrophil adhesion glycans. We show that oral 2-fluorofucose treatment afforded complete protection from tumor engraftment in a syngeneic tumor vaccine model, inhibited neutrophil extravasation, and delayed the outgrowth of tumor xenografts in immune-deficient mice. The results point to several potential therapeutic applications for molecules that selectively block the endogenous generation of fucosylated glycan structures.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Vacunas contra el Cáncer/farmacología , Fucosa/farmacología , Fucosiltransferasas/antagonistas & inhibidores , Guanosina Difosfato Fucosa/metabolismo , Polisacáridos/metabolismo , Animales , Células CHO , Línea Celular Tumoral , Cromatografía Liquida , Cricetinae , Cricetulus , Diseño de Fármacos , Femenino , Fucosa/química , Humanos , Espectrometría de Masas , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Neutrófilos/metabolismo
2.
Blood ; 122(8): 1455-63, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23770776

RESUMEN

Outcomes in acute myeloid leukemia (AML) remain unsatisfactory, and novel treatments are urgently needed. One strategy explores antibodies and their drug conjugates, particularly those targeting CD33. Emerging data with gemtuzumab ozogamicin (GO) demonstrate target validity and activity in some patients with AML, but efficacy is limited by heterogeneous drug conjugation, linker instability, and a high incidence of multidrug resistance. We describe here the development of SGN-CD33A, a humanized anti-CD33 antibody with engineered cysteines conjugated to a highly potent, synthetic DNA cross-linking pyrrolobenzodiazepine dimer via a protease-cleavable linker. The use of engineered cysteine residues at the sites of drug linker attachment results in a drug loading of approximately 2 pyrrolobenzodiazepine dimers per antibody. In preclinical testing, SGN-CD33A is more potent than GO against a panel of AML cell lines and primary AML cells in vitro and in xenotransplantation studies in mice. Unlike GO, antileukemic activity is observed with SGN-CD33A in AML models with the multidrug-resistant phenotype. Mechanistic studies indicate that the cytotoxic effects of SGN-CD33A involve DNA damage with ensuing cell cycle arrest and apoptotic cell death. Together, these data suggest that SGN-CD33A has CD33-directed antitumor activity and support clinical testing of this novel therapeutic in patients with AML.


Asunto(s)
Anticuerpos Monoclonales Humanizados/química , Benzodiazepinas/química , Resistencia a Antineoplásicos , Inmunoconjugados/química , Leucemia Mieloide Aguda/tratamiento farmacológico , Lectina 3 Similar a Ig de Unión al Ácido Siálico/química , Animales , Apoptosis , Ciclo Celular , Reactivos de Enlaces Cruzados/química , Reactivos de Enlaces Cruzados/farmacología , Cisteína/genética , Dimerización , Diseño de Fármacos , Células HEK293 , Células HL-60 , Humanos , Leucemia Mieloide Aguda/inmunología , Ratones
3.
Mol Cancer Ther ; 22(12): 1444-1453, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37619980

RESUMEN

Integrin beta-6, a component of the heterodimeric adhesion receptor alpha-v/beta-6, is overexpressed in numerous solid tumors. Its expression has been shown by multiple investigators to be a negative prognostic indicator in diverse cancers including colorectal, non-small cell lung, gastric, and cervical. We developed SGN-B6A as an antibody-drug conjugate (ADC) directed to integrin beta-6 to deliver the clinically validated payload monomethyl auristatin E (MMAE) to cancer cells. The antibody component of SGN-B6A is specific for integrin beta-6 and does not bind other alpha-v family members. In preclinical studies, this ADC has demonstrated activity in vivo in models derived from non-small cell lung, pancreatic, pharyngeal, and bladder carcinomas spanning a range of antigen expression levels. In nonclinical toxicology studies in cynomolgus monkeys, doses of up to 5 mg/kg weekly for four doses or 6 mg/kg every 3 weeks for two doses were tolerated. Hematologic toxicities typical of MMAE ADCs were dose limiting, and no significant target-mediated toxicity was observed. A phase I first-in-human study is in progress to evaluate the safety and antitumor activity of SGN-B6A in a variety of solid tumors known to express integrin beta-6 (NCT04389632).


Asunto(s)
Antineoplásicos , Carcinoma , Inmunoconjugados , Humanos , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Pronóstico , Integrinas , Línea Celular Tumoral
4.
Clin Cancer Res ; 14(23): 7763-72, 2008 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19047103

RESUMEN

PURPOSE: CD70 (CD27L) is a member of the tumor necrosis factor family aberrantly expressed on a number of hematologic malignancies and some carcinomas. CD70 expression on malignant cells coupled with its highly restricted expression on normal cells makes CD70 an attractive target for monoclonal antibody (mAb)-based therapies. We developed a humanized anti-CD70 antibody, SGN-70, and herein describe the antitumor activities of this mAb. EXPERIMENTAL DESIGN: CD70 expression on primary tumors was evaluated by immunohistochemical staining of Hodgkin lymphoma, non-Hodgkin lymphoma, multiple myeloma, and renal cell carcinoma tissue microarrays. The CD70-binding and cytotoxic activities of SGN-70 were tested in vitro using a number of cell-based assays. The in vivo antitumor properties of SGN-70 were tested in severe combined immunodeficient mice bearing disseminated lymphoma and multiple myeloma xenografts. Mechanism-of-action studies were conducted using SGN-70v, a variant mAb with equivalent target-binding activity but impaired Fcgamma receptor binding compared with SGN-70. RESULTS: Immunohistochemical analysis identified CD70 expression on approximately 40% of multiple myeloma isolates and confirmed CD70 expression on a high percentage of Hodgkin lymphoma Reed-Sternberg cells, non-Hodgkin lymphoma, and renal cell carcinoma tumors. SGN-70 lysed CD70+ tumor cells via Fc-dependent functions, including antibody-dependent cellular cytotoxicity and phagocytosis and complement fixation. In vivo, SGN-70 treatment significantly decreased tumor burden and prolonged survival of tumor-bearing mice. CONCLUSIONS: SGN-70 is a novel humanized IgG1 mAb undergoing clinical development for the treatment of CD70+ cancers. SGN-70 possesses Fc-dependent antibody effector functions and mediates antitumor activity in vivo.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antineoplásicos/inmunología , Ligando CD27/inmunología , Animales , Anticuerpos Monoclonales/farmacología , Afinidad de Anticuerpos , Antineoplásicos/farmacología , Ligando CD27/metabolismo , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/metabolismo , Humanos , Inmunohistoquímica , Neoplasias Renales/inmunología , Neoplasias Renales/metabolismo , Linfoma/inmunología , Linfoma/metabolismo , Ratones , Ratones SCID , Análisis de Matrices Tisulares , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Mol Cancer Ther ; 17(2): 554-564, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29142066

RESUMEN

Treatment choices for acute myelogenous leukemia (AML) patients resistant to conventional chemotherapies are limited and novel therapeutic agents are needed. IL3 receptor alpha (IL3Rα, or CD123) is expressed on the majority of AML blasts, and there is evidence that its expression is increased on leukemic relative to normal hematopoietic stem cells, which makes it an attractive target for antibody-based therapy. Here, we report the generation and preclinical characterization of SGN-CD123A, an antibody-drug conjugate using the pyrrolobenzodiazepine dimer (PBD) linker and a humanized CD123 antibody with engineered cysteines for site-specific conjugation. Mechanistically, SGN-CD123A induces activation of DNA damage response pathways, cell-cycle changes, and apoptosis in AML cells. In vitro, SGN-CD123A-mediated potent cytotoxicity of 11/12 CD123+ AML cell lines and 20/23 primary samples from AML patients, including those with unfavorable cytogenetic profiles or FLT3 mutations. In vivo, SGN-CD123A treatment led to AML eradication in a disseminated disease model, remission in a subcutaneous xenograft model, and significant growth delay in a multidrug resistance xenograft model. Moreover, SGN-CD123A also resulted in durable complete remission of a patient-derived xenograft AML model. When combined with a FLT3 inhibitor quizartinib, SGN-CD123A enhanced the activity of quizartinib against two FLT3-mutated xenograft models. Overall, these data demonstrate that SGN-CD123A is a potent antileukemic agent, supporting an ongoing trial to evaluate its safety and efficacy in AML patients (NCT02848248). Mol Cancer Ther; 17(2); 554-64. ©2017 AACR.


Asunto(s)
Inmunoconjugados/farmacología , Subunidad alfa del Receptor de Interleucina-3/inmunología , Leucemia Mieloide Aguda/tratamiento farmacológico , Animales , Anticuerpos Monoclonales/inmunología , Células CHO , Línea Celular Tumoral , Cricetulus , Humanos , Inmunoconjugados/inmunología , Leucemia Mieloide Aguda/inmunología , Ratones , Ratones SCID , Células THP-1 , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Cancer Res ; 65(18): 8331-8, 2005 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16166310

RESUMEN

SGN-40 is a humanized IgG1 antihuman CD40 that is currently in a phase I clinical trial for the treatment of multiple myeloma. As surface CD40 expression on B-lineage cells is maintained from pro-B cells to plasma cells, SGN-40 may be applicable to treatment of other B-cell neoplasias, including non-Hodgkin's lymphoma. In this study, we examined potential in vitro and in vivo anti-B-lineage lymphoma activity of SGN-40. Recombinant SGN-40 was expressed and purified from Chinese hamster ovary cells and characterized based on binding affinity, specificity, and normal B-cell stimulation. The ability of SGN-40 to target neoplastic B cells was examined in vitro by proliferation inhibition, cytotoxicity, and antibody-dependent cell cytotoxicity assays and in vivo by human lymphoma xenograft models. Recombinant SGN-40 showed high affinity, Kd of approximately 1 nmol/L, and specific binding to CD40. Whereas SGN-40 was a weak agonist in stimulating normal B-cell proliferation in the absence of IL-4 and CD40L, it delivered potent proliferation inhibitory and apoptotic signals to, and mediated antibody-dependent cytotoxicity against, a panel of high-grade B-lymphoma lines. These in vitro antilymphoma effects were extended to disseminated and s.c. xenograft CD40 tumor models. In these xenograft models, the antitumor activity of SGN-40 was comparable with that of rituximab. The preclinical in vitro and in vivo antilymphoma activity of SGN-40 observed in this study provides a rationale for the clinical testing of SGN-40 in the treatment of CD40+ B-lineage lymphomas.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antígenos CD40/inmunología , Inmunoglobulina G/farmacología , Linfoma de Células B/terapia , Animales , Anticuerpos Monoclonales/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos , Apoptosis/efectos de los fármacos , Apoptosis/inmunología , Linfocitos B/citología , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Caspasa 3 , Caspasas/metabolismo , Procesos de Crecimiento Celular/efectos de los fármacos , Procesos de Crecimiento Celular/inmunología , Línea Celular Tumoral , Activación Enzimática , Humanos , Inmunoglobulina G/inmunología , Linfoma de Células B/inmunología , Linfoma de Células B/patología , Ratones , Ratones SCID , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Cancer Res ; 62(13): 3736-42, 2002 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-12097283

RESUMEN

The leukocyte activation marker CD30 is highly expressed on the Reed Sternberg cells of Hodgkin's disease (HD). On normal tissues, CD30 has a restricted expression profile limited to activated T cells, activated B cells, and activated natural killer cells. This expression profile makes CD30 an ideal target for monoclonal antibody (mAb)-based therapies of Hodgkin's disease. CD30 mAbs have been shown to be effective in in vitro and in vivo models of hematologic malignancies such as anaplastic large cell lymphoma, yet these mAb have not been efficacious in HD models. We have found that a mAb against CD30, AC10, was able to inhibit the growth of HD cell lines in vitro. To generate a more clinically relevant molecule, the variable regions from AC10 were cloned into an expression construct containing the human gamma1 heavy chain and kappa light chain constant regions. The resulting chimeric antibody, designated SGN-30, retained the binding and in vitro growth-inhibitory activities of the parental antibody. Treatment of HD cell lines with SGN-30 in vitro resulted in growth arrest in the G(1) phase of the cell cycle and DNA fragmentation consistent with apoptosis in the HD line L540cy. Severe combined immunodeficient mouse xenograft models of disseminated HD treated with SGN-30 produced significant increases in survival. Similarly, xenograft models of localized HD demonstrated dose-dependent reduction in tumor mass in response to SGN-30 therapy. SGN-30 is being developed for the treatment of patients who have HD that is refractory to initial treatment or who have relapsed and have limited therapeutic options.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Fragmentación del ADN , Enfermedad de Hodgkin/terapia , Antígeno Ki-1/inmunología , Animales , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Células CHO , Ciclo Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Cricetinae , Enfermedad de Hodgkin/genética , Enfermedad de Hodgkin/inmunología , Enfermedad de Hodgkin/patología , Humanos , Hibridomas , Ratones , Ratones SCID , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Clin Cancer Res ; 10(23): 7842-51, 2004 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-15585616

RESUMEN

The anti-CD20 antibody rituximab is useful in the treatment of certain B-cell malignancies, most notably non-Hodgkin's lymphoma. Its efficacy has been increased when used in combination with chemotherapy, yet anti-CD20 monoclonal antibodies (mAbs) directly conjugated with drugs such as doxorubicin (Dox) have failed to deliver drug or to demonstrate antitumor activity. We have produced anti-CD20 antibody-drug conjugates that possess potent antitumor activity by using the anti-mitotic agent, monomethyl auristatin E (MMAE), linked via the lysosomally cleavable dipeptide, valine-citrulline (vc). Two anti-CD20 conjugates, rituximab-vcMMAE and 1F5-vcMMAE, were selectively cytotoxic against CD20(+) B-lymphoma cell lines, with IC(50) values ranging from 50 ng/mL to 1 microg/mL. Unlike rituximab, which showed diffuse surface localization, rituximab-vcMMAE capped and was internalized within 4 hours after binding to CD20(+) B cells. Internalization of rituximab-vcMMAE was followed by rapid G(2)-M phase arrest and onset of apoptosis. Anti-CD20 antibody-drug conjugates prepared with Dox were internalized and localized as with rituximab-vcMMAE, yet these were not effective for drug delivery (IC(50) > 50 microg/mL). Consistent with in vitro activity, rituximab-vcMMAE showed antitumor efficacy in xenograft models of CD20-positive lymphoma at doses where rituximab or rituximab-Dox conjugates were ineffective. These data indicate that anti-CD20-based antibody-drug conjugates are effective antitumor agents when prepared with a stable, enzyme-cleavable peptide linkage to highly potent cytotoxic agents such as MMAE.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antígenos CD20/inmunología , Antineoplásicos/farmacología , Linfoma de Células B , Oligopéptidos/metabolismo , Oligopéptidos/farmacología , Animales , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales de Origen Murino , Antineoplásicos/metabolismo , Apoptosis/efectos de los fármacos , División Celular/efectos de los fármacos , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Fase G2/efectos de los fármacos , Humanos , Linfoma de Células B/tratamiento farmacológico , Linfoma de Células B/inmunología , Ratones , Oligopéptidos/efectos adversos , Oligopéptidos/química , Rituximab , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Blood ; 109(3): 1185-92, 2007 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-17038522

RESUMEN

Antigens expressed on malignant cells in the absence of significant expression on normal tissues are highly desirable targets for therapeutic antibodies. CD70 is a TNF superfamily member whose normal expression is highly restricted but is aberrantly expressed in hematologic malignancies including non-Hodgkin lymphoma (NHL), Hodgkin disease, and multiple myeloma. In addition, solid tumors such as renal cell carcinoma, nasopharyngeal carcinoma, thymic carcinoma, meduloblastoma, and glioblastoma express high levels of this antigen. To functionally target CD70-expressing cancers, a murine anti-CD70 monoclonal antibody was engineered to contain human IgG1 constant domains. The engineered antibody retained the binding specificity of the murine parent monoclonal antibody and was shown to induce Fc-mediated effector functions including antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, and antibody-dependent cellular phagocytosis in vitro. Further, administration of this antibody significantly prolonged survival of severe combined immunodeficient (SCID) mice bearing CD70+ disseminated human NHL xenografts. Survival of these mice was dependent upon the activity of resident effector cells including neutrophils, macrophages, and natural killer (NK) cells. These data suggest that an anti-CD70 antibody, when engineered to contain human IgG1 constant domains, possesses effector cell-mediated antitumor activity and has potential utility for anticancer therapy.


Asunto(s)
Anticuerpos/uso terapéutico , Antineoplásicos , Ligando CD27/inmunología , Linfoma no Hodgkin/terapia , Ingeniería de Proteínas/métodos , Animales , Anticuerpos/genética , Anticuerpos/inmunología , Especificidad de Anticuerpos , Citotoxicidad Celular Dependiente de Anticuerpos , Línea Celular Tumoral , Proteínas del Sistema Complemento , Humanos , Sistema Inmunológico/citología , Inmunoglobulina G , Ratones , Ratones SCID , Fagocitosis , Tasa de Supervivencia , Trasplante Heterólogo
10.
Bioconjug Chem ; 15(4): 765-73, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15264863

RESUMEN

Monoclonal antibodies (mAb) selectively recognizing tumor surface antigens are an important and evolving approach to targeted cancer therapy. One application of therapeutic mAbs is drug targeting via mAb-drug conjugate (ADC) technology. Identification of mAbs capable of internalizing following antigen binding has been accomplished by tracking decline of surface-bound mAb or by internalization of a secondary mAb linked to a toxin. These methods may not be sufficiently sensitive for screening nor wholly predictive of the mAbs' capacity for a specific drug delivery. We have developed a highly selective and sensitive method to detect mAbs for cell internalization and drug delivery. This system uses secondary anti-human or anti-murine mAbs conjugated to the high-potency drug monomethyl auristatin E (MMAE) via a highly stable, enzymatically cleavable linker. Prior studies of this drug linker technology demonstrated internalization of a primary ADC leads to trafficking to lysosomes, drug release by lysosomal cathepsin B, and ensuing cell death. A secondary antibody--drug conjugate (2 degrees ADC) capable of binding primary mAbs bound to the surface of antigen-positive cells has comparable drug delivery capability. The system is sufficiently sensitive to detect internalizing mAbs in nonclonal hybridoma supernatants and is predictive of the activity of subsequently produced primary ADC. Because of their high extracellular stability, the noninternalized 2 degrees ADC are 100--1000-fold less toxic to cells over extended periods of time, permitting an assay in which components can be added without need for separate wash steps. This homogeneous screening system is amenable to medium-throughput screening applications and enables the early identification of mAbs capable of intracellular trafficking for drug delivery and release.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Lisosomas/metabolismo , Oligopéptidos/análisis , Oligopéptidos/química , Animales , Anticuerpos Monoclonales/análisis , Anticuerpos Monoclonales/inmunología , Transporte Biológico , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Endocitosis , Humanos , Hibridomas/inmunología , Hibridomas/metabolismo , Ratones , Sensibilidad y Especificidad
11.
Blood ; 102(4): 1458-65, 2003 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12714494

RESUMEN

The chimeric monoclonal antibody cAC10, directed against CD30, induces growth arrest of CD30+ cell lines in vitro and has pronounced antitumor activity in severe combined immunodeficiency (SCID) mouse xenograft models of Hodgkin disease. We have significantly enhanced these activities by conjugating to cAC10 the cytotoxic agent monomethyl auristatin E (MMAE) to create the antibody-drug conjugate cAC10-vcMMAE. MMAE, a derivative of the cytotoxic tubulin modifier auristatin E, was covalently coupled to cAC10 through a valine-citrulline peptide linker. The drug was stably attached to the antibody, showing only a 2% release of MMAE following 10-day incubation in human plasma, but it was readily cleaved by lysosomal proteases after receptor-mediated internalization. Release of MMAE into the cytosol induced G2/M-phase growth arrest and cell death through the induction of apoptosis. In vitro, cAC10-vcMMAE was highly potent and selective against CD30+ tumor lines (IC50 less than 10 ng/mL) but was more than 300-fold less active on antigen-negative cells. In SCID mouse xenograft models of anaplastic large cell lymphoma or Hodgkin disease, cAC10-vcMMAE was efficacious at doses as low as 1 mg/kg. Mice treated at 30 mg/kg cAC10-vcMMAE showed no signs of toxicity. These data indicate that cAC10-vcMMAE may be a highly effective and selective therapy for the treatment of CD30+ neoplasias.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Inmunoconjugados/farmacología , Inmunotoxinas/farmacología , Antígeno Ki-1/inmunología , Oligopéptidos/farmacología , Animales , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/química , Antineoplásicos/efectos adversos , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Brentuximab Vedotina , Ciclo Celular/efectos de los fármacos , Estabilidad de Medicamentos , Enfermedad de Hodgkin/tratamiento farmacológico , Enfermedad de Hodgkin/inmunología , Enfermedad de Hodgkin/metabolismo , Humanos , Inmunoconjugados/química , Inmunotoxinas/química , Concentración 50 Inhibidora , Antígeno Ki-1/metabolismo , Ratones , Ratones SCID , Oligopéptidos/efectos adversos , Oligopéptidos/química , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA