Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(18)2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34577530

RESUMEN

Clinical classification models are mostly pathology-dependent and, thus, are only able to detect pathologies they have been trained for. Research is needed regarding pathology-independent classifiers and their interpretation. Hence, our aim is to develop a pathology-independent classifier that provides prediction probabilities and explanations of the classification decisions. Spinal posture data of healthy subjects and various pathologies (back pain, spinal fusion, osteoarthritis), as well as synthetic data, were used for modeling. A one-class support vector machine was used as a pathology-independent classifier. The outputs were transformed into a probability distribution according to Platt's method. Interpretation was performed using the explainable artificial intelligence tool Local Interpretable Model-Agnostic Explanations. The results were compared with those obtained by commonly used binary classification approaches. The best classification results were obtained for subjects with a spinal fusion. Subjects with back pain were especially challenging to distinguish from the healthy reference group. The proposed method proved useful for the interpretation of the predictions. No clear inferiority of the proposed approach compared to commonly used binary classifiers was demonstrated. The application of dynamic spinal data seems important for future works. The proposed approach could be useful to provide an objective orientation and to individually adapt and monitor therapy measures pre- and post-operatively.


Asunto(s)
Inteligencia Artificial , Aprendizaje Automático , Humanos , Postura , Máquina de Vectores de Soporte
2.
Front Bioeng Biotechnol ; 12: 1350135, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38419724

RESUMEN

Objective: Biomechanical Machine Learning (ML) models, particularly deep-learning models, demonstrate the best performance when trained using extensive datasets. However, biomechanical data are frequently limited due to diverse challenges. Effective methods for augmenting data in developing ML models, specifically in the human posture domain, are scarce. Therefore, this study explored the feasibility of leveraging generative artificial intelligence (AI) to produce realistic synthetic posture data by utilizing three-dimensional posture data. Methods: Data were collected from 338 subjects through surface topography. A Variational Autoencoder (VAE) architecture was employed to generate and evaluate synthetic posture data, examining its distinguishability from real data by domain experts, ML classifiers, and Statistical Parametric Mapping (SPM). The benefits of incorporating augmented posture data into the learning process were exemplified by a deep autoencoder (AE) for automated feature representation. Results: Our findings highlight the challenge of differentiating synthetic data from real data for both experts and ML classifiers, underscoring the quality of synthetic data. This observation was also confirmed by SPM. By integrating synthetic data into AE training, the reconstruction error can be reduced compared to using only real data samples. Moreover, this study demonstrates the potential for reduced latent dimensions, while maintaining a reconstruction accuracy comparable to AEs trained exclusively on real data samples. Conclusion: This study emphasizes the prospects of harnessing generative AI to enhance ML tasks in the biomechanics domain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA